Water Quality Assessment

- Dr Than Htut
- M.B.,B.S (Rgn) IM(1)
- M.Med (Occupational Medicine) Singapore, NUS

WATER ON THE WEB

BODYBUILDING.COM

Developed by: Updated: U5-m21a-s2

Water's effect on the Body

Water:- a person use each day

- Americans use an average of 168 liters a person each day
- Dutch people-is about 135 litres

the water that is used by industries, businesses and institutions an American uses an average of 650 gallons each day

Water Sources

- Groundwater
- Surface Water
- Municipal Water Supplies

Water Sources – Ground Water

Advantages:

Constant Temperature

Disadvantages:

- Dissolved H₂S and CO₂
- Low Dissolved Oxygen
- Supersaturation
- High IronConcentration

Water Sources – Municipal Water

Designed and treated to safeguard the health of humans, not fish!

Advantages

- Availability
- Reliability

Disadvantage

- Chlorine
- Fluorine
- Cost

Water Quality Parameters

Critical Parameters

- Dissolved Oxygen
- Temperature
- Ammonia/Nitrite/Nitrate
- pH

Important Parameters

- Alkalinity/Hardness
- Salinity
- Carbon Dioxide
- Solids

Water quality parameters

Water Quality Parameters

- Dissolved oxygen
- Suspended sediments (TSS) and turbidity
- Specific conductivity (EC)
- alkalinity
- pH
- Temperature
- Major ions

Dissolved Oxygen

DO – importance and reporting

- Oxygen is produced during photosynthesis and consumed during respiration and decomposition.
- Generally < 3 mg/L is stressful to aquatic life
- Units of measurement are:
 - Concentration: mg/L = ppm; concentrations range 0.0 to 20 mg/L
 - % saturation used to determine if water is fully saturated with oxygen at a particular temperature

DO probes and meters

 The WOW units use either Hydrolab or YSI multiprobe data sounds, but there are many others

Temperature

Off-the-self-components and hardware.

Included with most DO, pH, conductivity meters.

NOT RECOMMENDED!

Mercury thermometers

Temperature importance

- Temperature affects:
 - the oxygen content of the water (oxygen levels become lower as temperature increases)
 - the rate of photosynthesis by aquatic plants
 - the metabolic rates of aquatic organisms
 - the **sensitivity of organisms** to toxic wastes, parasites, and diseases

Temperature measurement - probes

- Types of probes
 - Liquid-in-glass
 - Thermistor: based on measuring changes in electrical resistance of a semi-conductor with increasing temperature.

thermistor on a YSI sonde

pH

pH value expresses the intensity of the acidic or basic characteristic of water.

Seawater: 8.0-8.5

Freshwater: 6.5 – 9.0

Developed by: Updated: U5-m21a-s20

pH – probes

 a bench or hand-held meter and probe can be used in a fresh subsample if you don't have a field meter with a pH probe.

Sedimentation/siltation

 Excessive sedimentation in streams and rivers is considered to be a major cause of surface water pollution in the U.S. by the USEPA

Measuring turbidity

- Turbidity measures the scattering effect suspended particles have on light
 - inorganics like clay and silt
 - organic material, both fine and colored
 - plankton and other microscopic organisms
 - Transparency or turbidity tubes

Even small amounts of wave action can erode exposed lakeshore sediments, in this case a minepit lake from northeastern Minnesota. Guess the mineral mined here.

Turbidity

- Field turbidity measurements are made with
 - Turbidimeters (bench meter for discrete samples)
 - Submersible turbidity sensors (Note USGS currently considers this a qualitative method)

Turbidity – units and reporting

- Nephelometric Turbidity Units (NTU) standards are formazin or other certified material
- JTU's are from an "older" technology in which a candle flame was viewed through a tube of water

1 NTU = 1 JTU (Jackson Turbidity Unit)

Water clarity – transparency tubes

Water clarity – transparency tubes

- Used in streams, ponds, wetlands, and some coastal zones
- Analogous to secchi depth in lakes: a measure of the dissolved and particulate material in the water

Water clarity – transparency tubes

- Useful for shallow water or fast moving streams bodies where a secchi would still be visible on the bottom
- It is a good measure of turbidity and suspended sediment (TSS)
- Used in many volunteer stream monitoring programs

Alkalinity Alkalinity

- a measure of the pH-buffering capacity or the acidneutralizing capacity of water.
- In chemical terms, alkalinity is defined as
- the total amount of titratable bases in water expressed as mg/L equivalent calcium carbonate (CaCO₃).

Alkalinity

Alkalinity (50 -150 mg/l as Ca CO₃)

Formula Weight	Common Name	Equivalent
NaOH	sodium hydroxide	40
Na ₂ CO ₃	sodium carbonate	53
NaHCO ₃	sodium bicarbonate	83
CaCO ₃	Calcium Carbonate	50
CaO	slaked lime	28
Ca(OH) ₂	hydrated lime	37

- Alkalinity

2320 – Titration Method

Titration with 0.02 N Sulfuric Acid with methyl orange indicator end point (4.5 pH)

1 ml titrant equals 10 mg/L CaCO3.

Salinity

Usually reported as parts per thousand, ppt.

Osmoregulation

Rule of Thumb

To reduce stress and reduce energy required for osmoregulation, freshwater aquaculture systems are maintained at 2-3 ppt salinity.

Specific electrical conductivity = EC25

EC25 - importance

- Cheap, easy way to characterize the total dissolved salt concentration of a water sample
- For tracing water masses and defining mixing zones
 - Groundwater plumes
 - Stream flowing into another stream or into a lake or reservoir

Solids – settleable, suspended, dissolved

Three categories:

- settleable
- suspended
- fine or dissolved solids

Rule of Thumb

Solids produced by fish:

0.3 to 0.4 kg TSS for every

1 kg of feed fed

- upper limit: 25 mg TSS/L
- normal operation (species dependen
 - 10 mg/L for cold water species
 - 20 30 mg/L for warm water species

EC25 – units and reporting

Principle of measurement

- A small voltage is applied between 2 parallel metal rod shaped electrodes, usually 1 cm apart
- Measured current flow is proportional to the dissolved ion content of the water
- If the sensor is temperature compensated to 25°C, EC is called "specific" EC (EC25)

EC25 - units

- What in the World are microSiemens per centimeter (µS/cm)
- Units for EC and EC25 are mS/cm or μS/cm @25°C. The WOW site reports it as EC @25°C (in μS/cm).
- Usually report to 2 or 3 significant figures (to \pm ~ 1-5 μ S/cm)

EC25

- EC25 values in Streams reflect primarily a combination of watershed sources of salts and the hydrology of the system
 - wastewater from sewage treatment plants and industrial discharge
 - wastewater from on-site wastewater treatment and dispersal systems (septic systems and drain fields)
 - urban runoff
 - agricultural runoff
 - acid mine drainage
 - atmospheric inputs

Hardness

Classified as:

```
soft (0-75 mg/L
moderately hard (75 – 150 mg/L)
hard (150-300 mg/L)
very hard (> 300 mg/L)
```

Recommended range: 20 to 300 mg/L CaCO₃

Salinity

Measurement of a physical property:

- Conductivity
- Density hydrometer
- Refractive index

Ammonia, Nitrite and Nitrate

Ammonia:

colorimetric Nesslerization ion specific electrodes

Nitrite:

colorimetric

Nitrate: cadmium

reducing to nitrite with

catalyst, measure nitrite. ion specific electrode

Nitrates, Nitrites, and Ammonia

- Nitrogen is an essential nutrient
- required by all plants and animals for the formation of amino acids
- In molecular form, nitrogen cannot be used by most aquatic plants
- therefore it must be converted to another form
- such form is ammonia (NH₃)

common procedure for measuring nitrate

- first measure the amount of nitrite in a sample
- reduce any nitrate to nitrite
- Lastly, measure the combined nitrite (the initial nitrite plus the reduced nitrate)
 concentration

- Ammonia may be taken up by plants or
- oxidized by bacteria into nitrate (NO₃⁻) or nitrite (NO₂)
- nitrate usually the most important
- very difficult to directly measure

Common sources of excessive nitrogen

- Sewage
- agricultural runoff
- Elevated stream water nitrogen levels
- indicate the presence of one or both of these forms of pollution

Taste sense

 able to detect concentrations of a few tenths to several hundreds of ppm

 Taste can indicate that contaminants are present

cannot identify specific contaminants

Color

- suggest that organic impurities are present
- can even be caused by metal ions
- measured by Comparison of different samples visually or with a spectrometer
- an unusual color
- usually does not mean a health concern

Other Water Quality Parameters

- Nutrients nitrogen and phosphorus
- Fecal coliforms
- Biochemical oxygen demand (BOD)
- Metals
- Toxic contaminants

Fecal coliforms

Pathogens are number one

Water sampling - microbes

Sterile technique:

- Containers must be sterilized by autoclaving or with gas used to kill microbes
- Take care not to contaminate the container
- Water samplers should be swabbed with 70 % alcohol

Bacteria – E. coli and fecal coliforms

- Fecal bacteria are used as indicators of possible sewage contamination
- These bacteria indicate the possible presence of disease-causing bacteria, viruses, and protozoans that also live in human and animal digestive systems
- E. coli is currently replacing the fecal coliform assay in most beach monitoring programs

Water sample collection – grab samples

Grab samples for fecal coliforms are taken with sterile containers

Water sample collection

General considerations:

- Sample in the main current
- Avoid disturbing bottom sediments
- Collect the water sample on your upstream side

 A detailed discussion on how to manually collect stream and river water can be found in the USGS Field Manual Chapter 4: Collection of Water Samples

Suggested sample volumes

Analyte	Volume needed
chlorophyll	>500 mLs
TSS	Often > 1 L
total phosphorus total nitrogen anions	200 to 500 mLs
Dissolved nutrients	~ 100mLs
Total and dissolved carbon	~60 mLs
Metals	~60 mLs
color, DOC	~60 mLs

Stream sampling—sample labeling

 An unlabeled sample may as well just be dumped down the drain.

- Use good labels not masking tape, etc.
 Poor labels often fall off when frozen samples are thawed.
- Use permanent markers NOT ball point pens, pencils in a pinch

Water sampling - automated

- Automated stream sampling stations provide continuous monitoring of a variety of parameters
- These units are capable of both collecting water samples and measure various water quality parameters

Automated sampling – Duluth Streams

 These stream monitoring units are not "state of the art" but provide near real-time data for delivery into the data visualization tools

water to have a reddish color

- might be affected by iron
- a commonly occurring constituent of drinking water
- Iron tends to add a rusty, reddish brown (or sometimes Yellow color to water
- leaves particles of the same color

- If the color is more like **black**
- it could be a combination of iron and manganese
- Both of these metals can cause
- staining of plumbing fixtures or laundry
- not known to cause health problems

Odor

- smelling can usually detect even low levels of contaminants
- In most countries detecting contaminants through odor is bound to strict regulations
- as it can be a danger to ones health
- when dangerous contaminants are present in a sample

water to have an earthy odor

- A frequent cause of musty, earthy odors
- naturally occurring organic compounds derived from the decay of plant material in lakes and reservoirs
- The odors can be objectionable
- generally are not harmful to health
- odors can be caused by other constituents as well

water to have a rotten-egg odor

- Hydrogen sulfide (H₂S) is sometimes present in well water
- A few tenths of a milligram of hydrogen sulfide per liter can cause drinking water to have a rotten-egg odor
- While unpleasant, it is not harmful to health

sulfur content in well water

- High concentrations of sulfate (SO₄⁻⁻) may be associated with diarrhea
- EPA currently has a secondary drinking-water standard of 250 milligrams per liter (mg/L) sulfate
- Some waters with elevated sulfate also tend to have low pH (as in acid mine drainage)

tap water often smell like chlorine

- chlorine being the most widely used one
- a very effective disinfectant
- If the water has a chlorine smell
- it may actually indicate that not enough chlorine is being added to the system
- By increasing the amount of chlorine used at the treatment plant, different forms of chlorine are created in the water, which diminish chlorine odors

WATER QUALITY REPORT CARD

