
TB and HIV

20/1/2018 Dr Kyaw Swar Lin

Outline of presentation

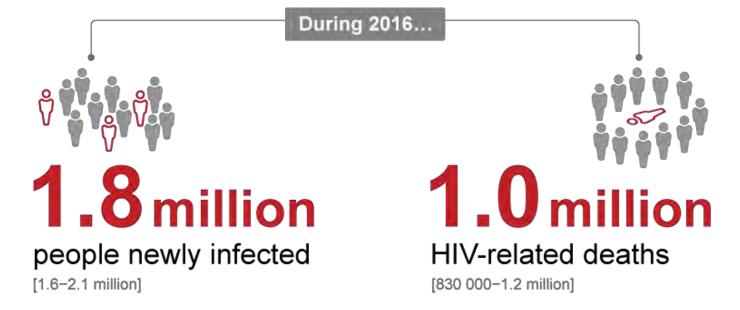
- Epidemiology
- Pathogenesis
- Clinical presentation
- Diagnosis
- Treatment
- DDI
- IRIS

Epidemiology

WHO global TB report 2017

- TB is the ninth leading cause of death worldwide and the
- Leading cause from a single infectious agent, ranking above HIV/AIDS.

One-third of world's population is infected by TB (1.7 billion) and
 5 – 15% of them will develop TB disease during their lifetime


- In 2016, 10.4 M fell ill with TB
 - 1.3 M death (non-HIV)
 - 375 000 deaths (HIV)

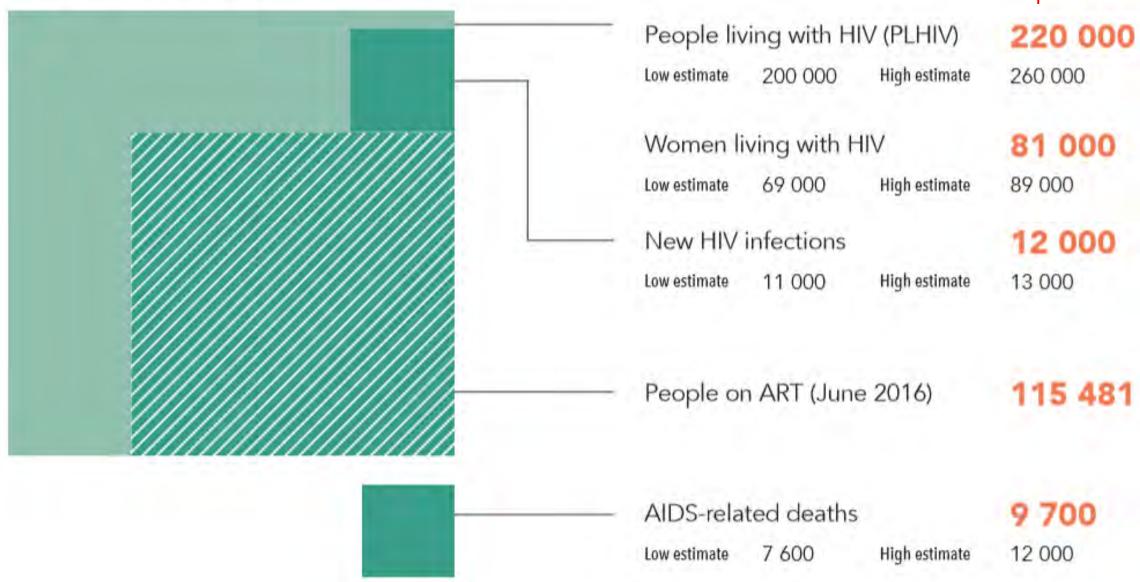
Summary of global HIV epidemic (2016)

36.7 million

people now estimated to be living with HIV

[30.8-42.9 million]

Myanmar TB data 2016 (WHO country profile)


- Total TB incidence = 191,000 or 361/100,000 population
- HIV prevalence in incident TB= 9.4 % OR 18,000

• Mortality , HIV-ve = 25,000HVI+ve = 4,900

Myanmar HIV profile 2017

0.6% prevalence

Global & Myanmar TB and HIV epidemics in 2017

HIV

- Globally:
 - 36.7 million cases
 - 1.1 million deaths
- Myanmar:
 - 220 000 cases
 - 9 700 deaths

TB

- Globally:
 - ■10.4 million cases
 - 1.6 million deaths
- Myanmar:
 - -191 000 cases (total)
 - -29,900 deaths (16% is HIV+)

TB - HIV co-infection

- Globally:
 - 1.8 million incident cases
 - 375,000 deaths
- Myanmar:
 - Incidence 18,000
 - Mortality 4,800 (26.7%)

The top 20 by estimated absolute number (in alphabetical order):

Angola Bangladesh Brazil China DPR Korea

DR Congo Ethiopia India Indonesia Kenya

Mozambique Myanmar

Nigeria

Pakistan Philippines

Russian Federation

South Africa

Thailand 1/2018
UR Tanzania

The additional 10 by estimated incidence rate per 100 000 population and with a minimum number of 10 000 cases per year (in alphabetical order):

Cambodia Central African Republic Congo Lesotho Liberia

Namibia Papua New Guinea Sierra Leone Zambia

Zimbabwe

The top 20 by estimated absolute number (in alphabetical order):

Angola Brazil Cameroon China DR Congo Ethiopia India

Indonesia Kenya

Lesotho Malawi

Mozambique Myanmar

Nigeria South Africa

Thailand Uganda

UR Tanzania aw Swar Lin, MMA Conference

Zambia

The additional 10 by estimated incidence rate per 100 000 population and with a minimum number of 1000 cases per year (in alphabetical order):

Botswana Central African Republic Chad

Congo Ghana

Guinea-Bissau

Liberia Namibia

Papua New Guinea Swaziland The top 20 by estimated absolute number (in alphabetical order):

Bangladesh China DPR Korea DR Congo

Ethiopia India Kazakhstan

Kenya Indonesia

Mozambique Myanmar

Nigeria Pakistan Philippines

Russian Federation South Africa

Thailand Ukraine

Uzbekistan

The additional 10 by estimated rate per 100 000 population and with a minimum number of 1000 cases per year (in

Angola Azerbaijan Belarus Kyrgyzstan Papua New Guinea Peru

alphabetical order):

Republic of Moldova Somalia Tajikistan

Zimbabwe

10

TB

Cambodia^a Sierra Leone^a

Azerbaijan Belarus Kazakhstan Kyrgyzstan Peru Republic of Moldova Somalia Tajikistan Ukraine Uzbekistan Bangladesh DPR Korea Pakistan Philippines Russian Federation Viet Nam

on Angola
China
DR Congo
Ethiopia
India
Indonesia
Kenya
Mozambique
Myanmar
Nigeria
Papua New Guineaa
South Africa
Thailand
Zimbabwea

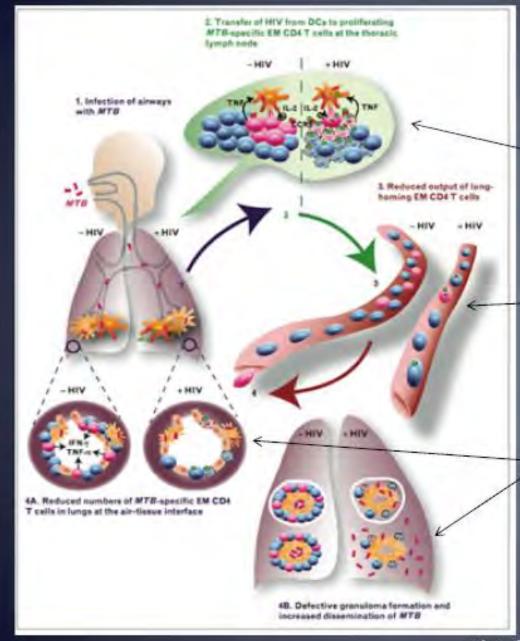
Brazil
Central African Republica
Congoa
Lesothoa
Liberiaa
Namibiaa
UR Tanzania

Zambia

Botswana Cameroon Chad Ghana Guinea-Bissau Malawi Swaziland Uganda

MDR-TB

TB/HIV


Specialist hospital Mingaladon About 1/3 of pts already have TB before ART

VEAD			ТВ		
YEAR	Start ART	CD4 average	N	%	
2011	1165	136	430	37	
2012	783	165	271	35	
2013	1210	182	419	35	
2014	1918	194	707	37	
2015	2191	208	718	33	

In 2015, there were 1853 admissions to SHM and 440 deaths

Disease	Prevalence	%	Mortality	%
TB (AII)	811	43.8	222	50.5
-TBM	250	30.8(of all TB)	126	56.7

Pathogenesis

Pathogenesis

HIV kills TB-specific CD4 cells Impairs macrophage activation

Reduced numbers lung-homing CD4 cells

Defective granuloma formation Loss of control of infection

Exposed ------- Disease

- In more than 90% of persons infected with *M. tuberculosis,* the pathogen is contained as asymptomatic latent infection (LTBI)
- The risk of active disease is estimated to be approximately
 - 5% in the 18 months after initial infection and then
 - approximately 5% for the remaining lifetime.
- LTBI reduces the risk of reinfection on repeated exposure whereas
- Active TB is associated with an increased risk of a second episode of tuberculosis on re-exposure

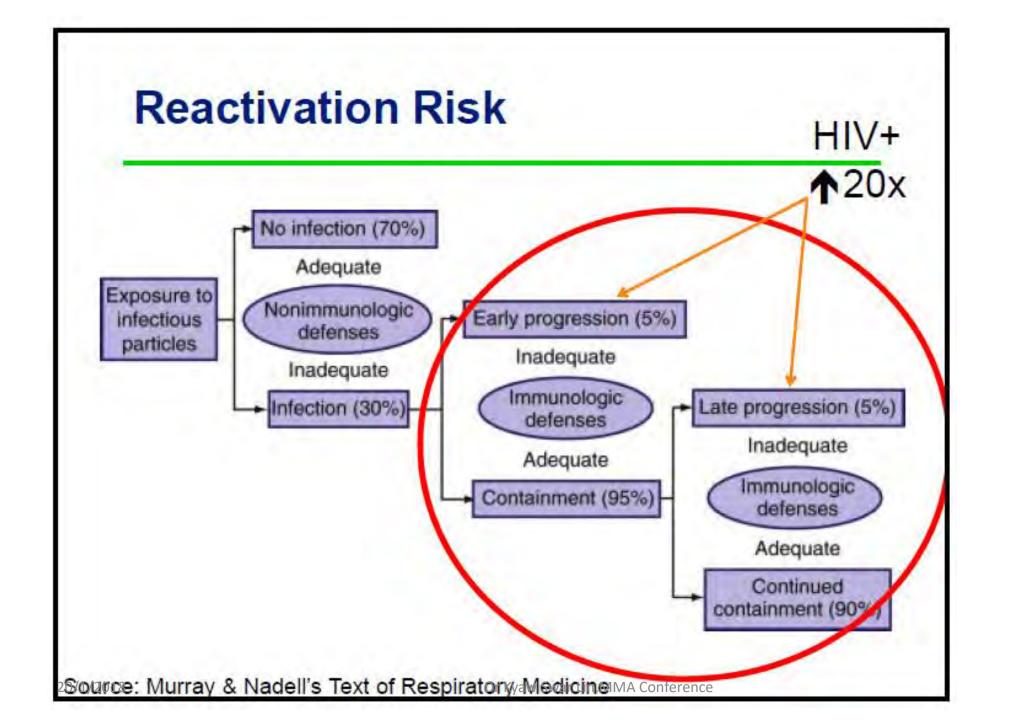
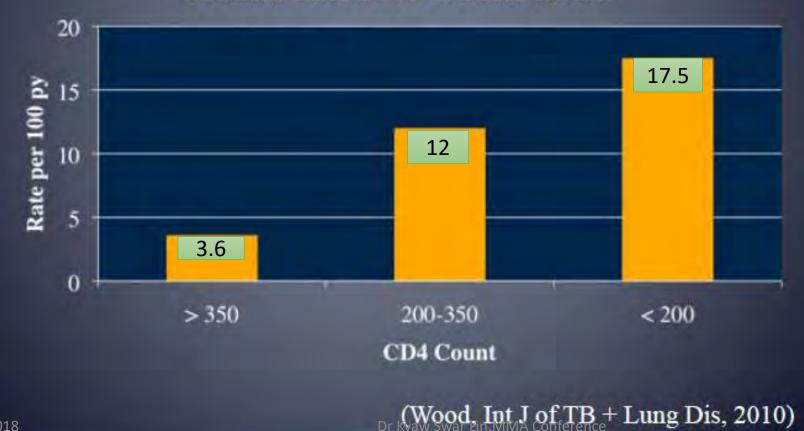


Table 1 Risk factors for TB activation

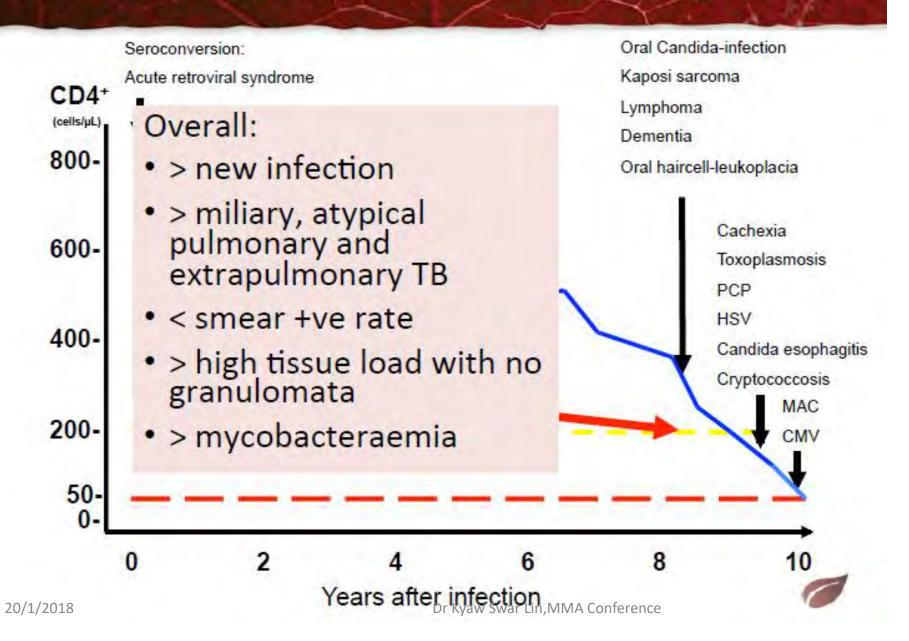

The usual quoted figure is 20 times			ι	TBI ⁴¹
Risk factor	TB risk ^a	Reference(s)	Country A ^b	Country B ^c
High-risk factors				
HIV/AIDS	10-100	Landry et al.,4 Hourburgh et al.9 and WHO14	Required	Required
Close contacts	15	Landry et al.4 and Sutherland et al.15	Required	Required for close contacts (<five old)<="" td="" years=""></five>
Organ-transplantation recipients	20-70	Aguado et al. 16 and Sakhuja et al. 17	Required	Not mentioned
Chronic renal failure requiring dialysis	6.9–52.5	Andrew et al., 18 Lundin et al., 19 Belcon et al. 20 and Hussein et al. 21	Required	Not mentioned
TNF-alpha blockers	1.6-25.1	Solovic et al. ²²	Required	Not mentioned
Silicosis	2.8	Cowie et al. ²³	Required	Not mentioned
Moderate-risk factors				
Fibronodular disease on chest x-ray	6-19	Grzybowski et al. ²⁴	Not mentioned	Not mentioned
Immigrants from high-TB-prevalence countries	2.9-5.3	Baussano et al. ²⁵	Options to be considered	Not mentioned
Health-care workers	2.55	Chu et al. ²⁶	Options to be considered	Not mentioned
Prisoners, homeless persons, illicit drug users	-	-	Options to be considered	Not mentioned
Low-risk factors				
Diabetes mellitus	1.6-7.83	Harries et al., ²⁷ Dobler et al., ²⁸ Jeon et al., ²⁹ Boucot et al., ³⁰ Kim et al. ³¹ and Baker et al. ³²	Not recommended	Not mentioned
Smoking	2-3.4	Altet et al., 33 Slama et al. 34 and Maurya et al. 35	Not recommended	Not mentioned
Use of corticosteroids	2.8-7.7	Jick et al. ³⁶	Not recommended	Not mentioned
Underweight	2-3	Palmer et al.37 and Comstock et al.38	Not recommended	Not mentioned
20/1/2018		Dr Kyaw Swar Lin,MMA Conference		18

WHO's recommendation for screening and treatment for

Pathogenesis and Natural History

Active Disease Rates Driven by Degree of Immunosuppression

Credit to Dr Robert Harrington


Impact of TB on HIV

- Generalized immune activation ——— Increased expression of the HIV coreceptors CCR5 and CXCR4
- increases in plasma HIV viremia (up to160 fold increase in VL)
- Increases vertical transmission of HIV and increased congenital transmission of TB
- TB increases the risk of progression to AIDS or death

Impact of HIV on TB

- Increased risk of reactivation from latent infection
 - 10% lifetime risk if HIV-ve
 - 10% annual risk if HIV+ve, upto 50% during lifetime
- TB occurs at any time in course of untreated HIV, usually early.
- The risk of TB increases after HIV seroconversion, doubling within the first year
- Accelerated progression leading to outbreaks of MDR & XDRTB
- Duration of TB disease prior to diagnosis was three times shorter TB is a more subacute than chronic illness
- HIV infected at high risk for TB immediately after ART initiation

TB in the course of HIV-infection

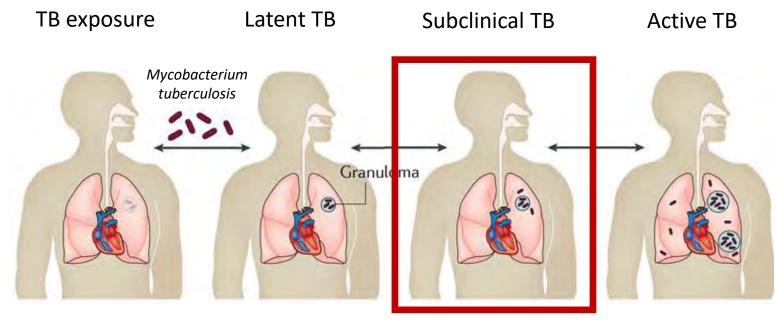
Clinical Presentation

Depends on immune status

- Certain TB types occur more frequently (more dissemination)
 - EPTB (10 -20% in HIV-ve vs upto 40 80 % in HIV+ve
 - TB meningitis (< 2% in HIV-ve vs 5 -10 % in HIV+ve)
- Certain TB syndromes are recognized
 - Pulmonary, lymphadenopathy, serositis, constitutional
- Extreme of presentation
 - Subclinical disease (may account for 10% of cases in high burden countries)
 - Accelerated & exaggerated (esp IRIS)
 - Outbreaks with resistant strains

- Pulmonary tuberculosis in HIV-infected patients bears many similarities to childhood tuberculosis;
 - paucibacillary,
 - involve hilar and mediastinal lymph nodes,
 - lack cavitation, and
 - are smear negative

High Rates of Clinical and Subclinical Tuberculosis among HIV-Infected Ambulatory Subjects in Tanzania


Clinical Infectious Diseases 2005; 40:1500-7

Lillian Mtei, Mecky Matee, Oliver Herfort, Muhammad Bakari, C. Robert Horsburgh, Richard Waddell,

- Ambulatory PLHIV with CD4>200, 93 pts, ART naïve
- 10 (10.7%) have subclinical TB (no -/S, either smear or culture +)

Patient	CD4 cell count, cells/mm³	Symptom	TST reaction size, mm	Smear	culture
1	525	None	16	-	+
2	880	None	12	-	+
3	538	None	0	-	+
4	362	None	0	-	+
5	386	None	20	+	+
6	324	None	15	-	+
7	261	None	14	-	+
8	630	None	38	+	+
9	445	None	17	-	+
10	365	None	20	+	+

Spectrum of TB and subclinical disease

A total of 630 PLHIV were screened for TB by smear & culture from 2011-2014 in Durban, S Africa

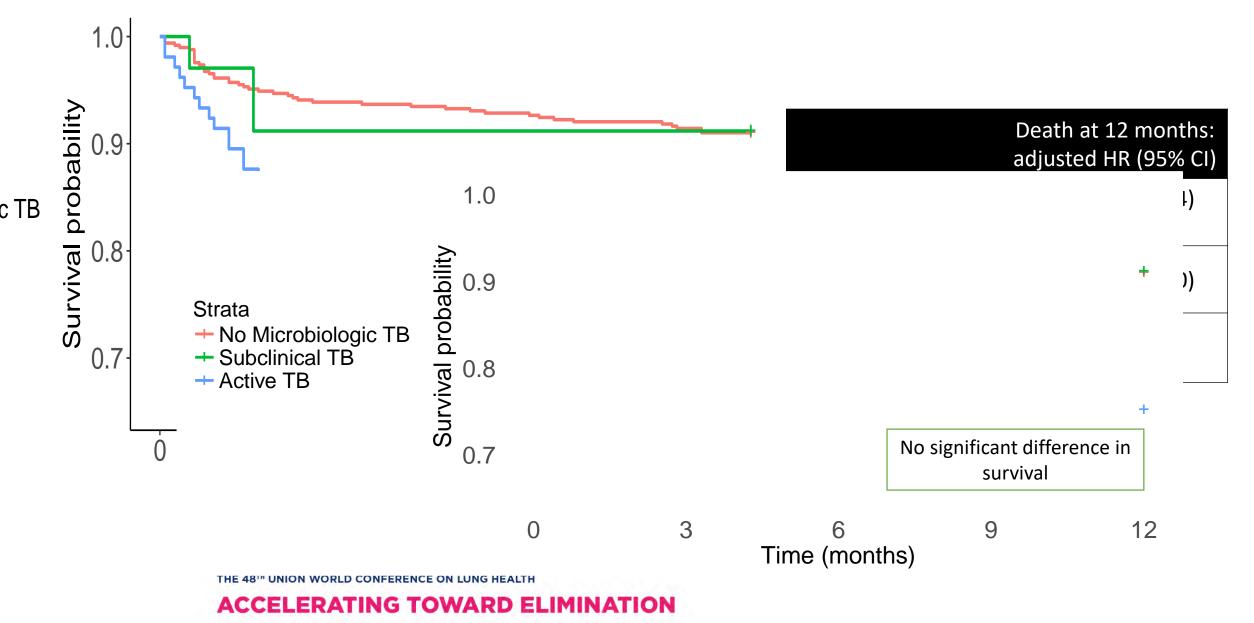
Active TB 106(16%), Subclinical TB 34 (5%), No TB 490 (79%); FU 12 months

THE 48TH UNION WORLD CONFERENCE ON LUNG HEALTH

ACCELERATING TOWARD ELIMINATION

Pai, M. et al. Tuberculosis *Nat. Rev. Dis. Primers* 2016; 2:1-23.

Results


All are ART naive

	Active TB N = 106 (16%)	Subclinical TB <i>N</i> = 34 (5%)	No Microbiologic TB N = 490	P value
Mean age, years (SD)	35 (9)	33 (9)	34 (10)	0.48
Men	70 (66%)	16 (47%)	248 (51%)	0.03
Mean CD4 cell count (SD)	138 (144)	200 (162)	289 (214)	<0.01
AFB smear positive	23 (22%)	14 (41%)		0.04
AFB culture positive	96 (91%)	28 (82%)		0.35

THE 48TH UNION WORLD CONFERENCE ON LUNG HEALTH

ACCELERATING TOWARD ELIMINATION

11-14 OCTOBER 2017 | GUADALAJARA, MEXICO

Screening HIV positive pregnant women for TB in South Africa increased detection by 10-fold

- compare universal sputum testing with standard symptom-based testing in this population, about 1000 pts in each arm, from 2015 to 2017, FU 2M postpartum
- Samples were tested with Xpert/RIF & liquid MGIT culture
- FU --- 2 months post partum

	Universal	Symptom
Median age(yr)	30.2	29.5
gestational age (wks)	24.6	24.4
Past TB	9.8%	7.8%
CD4	426	451
On ART 0/1/2018	99.5%	98.6%

	Universal	Symptom	P
TB diagnosed	34/941(<mark>3.6%</mark>)	4/1100 (<mark>0.36%</mark>)	
Infant mortality	1%	2.2%	0.13
Maternal mortality	0.1%	0.3%	0.87

Conclusion: Universal screening detects 10 time more TB patients, no significant effect on infant and maternal deaths

XDRTB outbreak in rural Africa 2005

Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa

Lancet 2006: 368: 1575-80

Neel R Gandhi, Anthony Moll, A Willem Sturm, Robert Pawinski, Thiloshini Govender, Umesh Lalloo, Kimberly Zeller, Jason Andrews, Gerald Friedland

- Rural South Africa, KwaZulu Natal, 2005 -2006, 1539 pts,
- TB 35%, MDRTB 41% (of culture isolates)
- 53 people have XDRTB, 52 died within 16 days from specimen collection
- 90% were infected with genetically similar strain
- All 44 XDR TB patients with known HIV status were HIV-infected

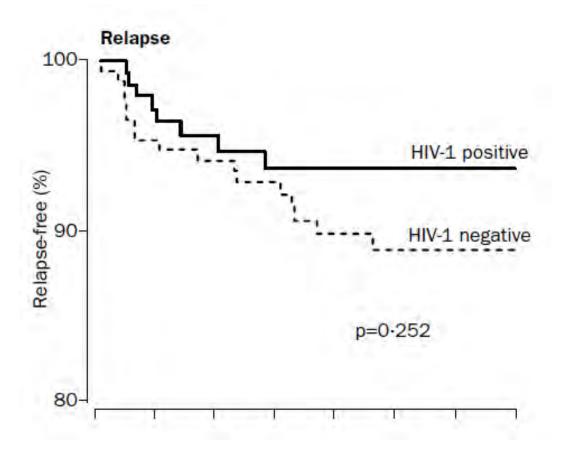
Recurrence: endogenous reactivation or exogenous reinfection?

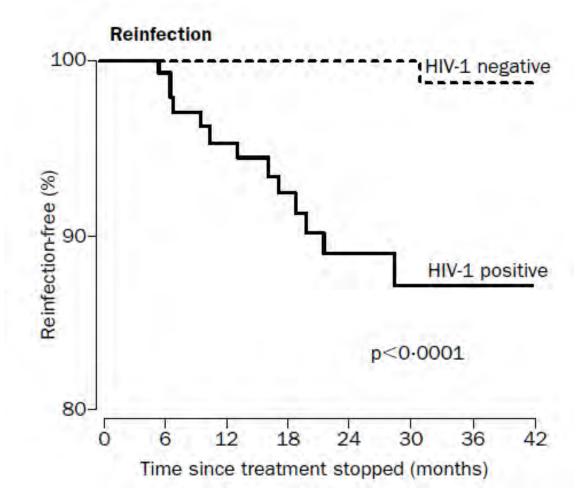
Recurrence of TB

- HIV-negative patients with 4-drug therapy and DOT
 - 2-3% recurrence
- HIV-positive patients
 - 14+ % recurrence rate
 - Some relapse with original strain
 - Most re-infect with new strain
 - Recurrence may herald drug resistance

HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers

Lancet 2001; 358: 1687–93


Pamela Sonnenberg, Jill Murray, Judith R Glynn, Stuart Shearer, Bupe Kambashi, Peter Godfrey-Faussett


- 326 mineworkers in S Africa in 1998, both HIV +ve (151 pts) & -ve (175), TB cured 3 yrs ago , FU 3 year for incident TB
- 20% recurrence rate, 16 per 100PY in HIV+ve pts, which is 2.4 times higher than HIV-ve pts

Conclusion

In high TB burden setting, HIV-1 increases the risk of recurrent tuberculosis because of an **increased risk of reinfection**

Reinfection vs Relapse

Recurrent Tuberculosis Risk Among HIVInfected Adults in Tanzania With Prior Active Tuberculosis Clinical Infectious Diseases 2013;56(1):151-8

- HIV-infected, BCG-immunized adults with CD4 counts ≥200 cells/MI
- 979 subjects, 80 (h/o prior TB), 899 (no prior TB, given IPT), median FU 3.2 yrs
- TB recurrence in prior TB group 13.8% vs 4.6%, HR 3
- Conclusions.
 - Compared to subjects without prior tuberculosis, the hazard of active tuberculosis is increased 3-fold among HIV-infected adults with prior active tuberculosis

After cure

Impact of HIV Infection on the Recurrence of Tuberculosis in South India

The Journal of Infectious Diseases 2010; 201:691–703

Sujatha Narayanan,1 Soumya Swaminathan,1 Philip Supply,2 Sivakumar Shanmugam,1 Gopalan Narendran,1

• HIV+ arm --- 306 cured pts --- 44 recurred (14%)

ART % ---missing data

- HIV-ve arm --- genotype result of paired isolates were available for 23 pairs --- 21 recurrent from the same strain
- Recurrence was due to exogenous reinfection in 88% of HIV-infected and 9% of HIV-uninfected patients (P < 0.05). Among recurrent isolates, the HIV-infected patients showed higher rate of multidrug resistance

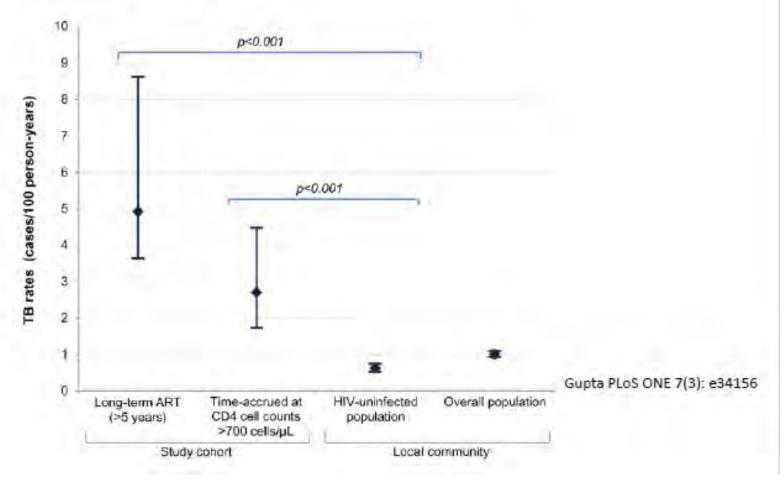
Published in final edited form as:

Int J Tuberc Lung Dis. 2011 May; 15(5): 571-581. doi:10.5588/ijtld.10.0483.

Antiretroviral therapy and the control of HIV-associated tuberculosis. Will ART do it?

ART reduces

S. D. Lawn^{1,2}, A. D. Harries^{2,3}, B. G. Williams⁴, R. E. Chaisson⁵, E. Losina⁶, K. M. De Cock⁷, and R. Wood¹


- the risk of TB by 67%,
- Recurrent TB 50%,
- mortality 64–95%
- prolongs survival in patients with HIV-associated drug-resistant TB.
- However, rates of TB remain substantial and above the background rates in HIV-uninfected populations despite ART use.
- The cumulative lifetime risk of TB in HIV infected individuals strongly depends on the amount of time that patients spend at low CD4 cell counts before and during ART.

ART reduces TB incidence, but still high

Meta-analysis: ART any CD4 HR 0.35 (0.28-0.44) ART CD4>350 HR 0.43 (0.3-0.63)

ART CD42330 TIR 0.43 (0.5

Suthar Plos Med 2012

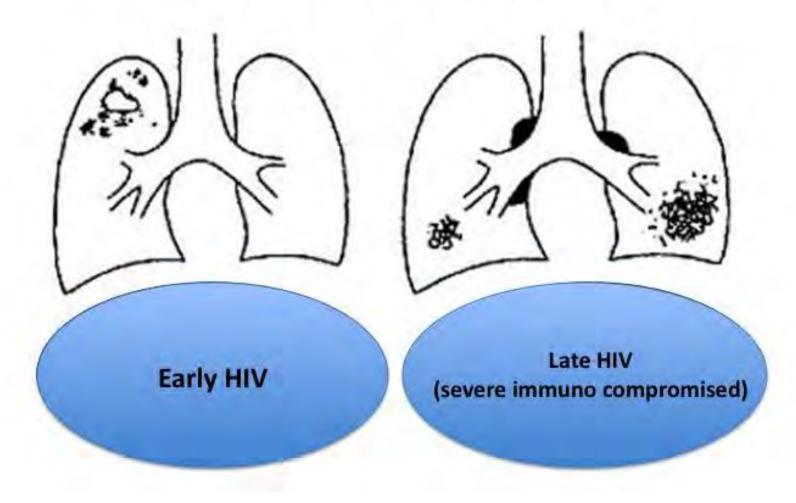
Risk of MDRTB

Association between HIV/AIDS and Multi-Drug Resistance Tuberculosis: A Systematic Review and Meta-Analysis PLoS ONE 9(1): e82235. doi:10.1371/journal.pone.0082235

Yonatan Moges Mesfin¹, Damen Hailemariam², Sibhatu Biadglign³, Kelemu Tilahun Kibret⁴*

- Meta-analysis of all 24 observational studies showed that HIV is associated with a marginal increased risk of MDRTB (OR 1.24)
- Sub-group analysis also showed that HIV infection was significantly associated with MDRTB in primary drug resistance group (OR 2.28)

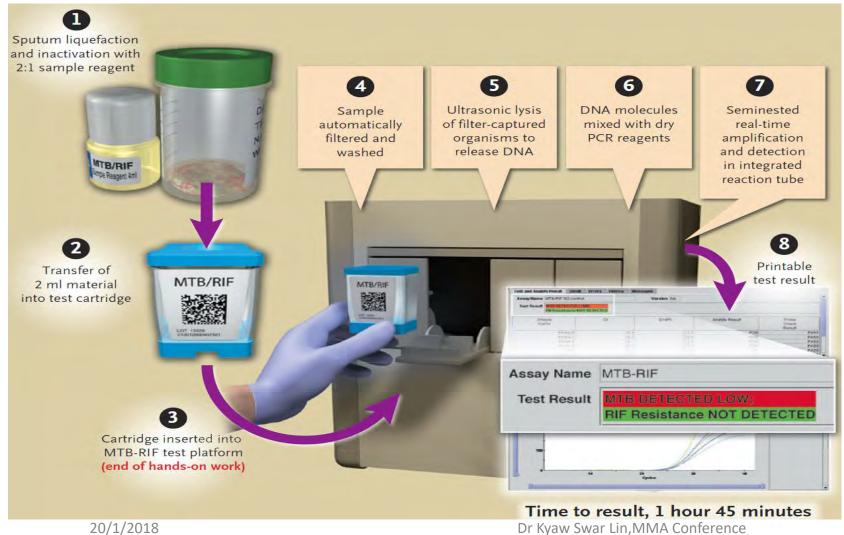
MDRTB in HIV-infected patients is transmitted from others, rather than acquired by ineffective or insufficient therapy


Diagnostic challenges

CXR

- At CD4>200, the radiographic pattern tends to be one of reactivation disease with upper-lobe infiltrates with or without cavities.
- If CD4 count <200, a pattern of primary disease with intrathoracic lymphadenopathy and lower-lobe infiltrates is seen.
- As chest radiographs may appear normal in up to 21% of those with culture-positive TB and CD4 counts of <50

High index of suspicion


X-ray findings in TB patients with HIV infection

Smear microscopy & culture

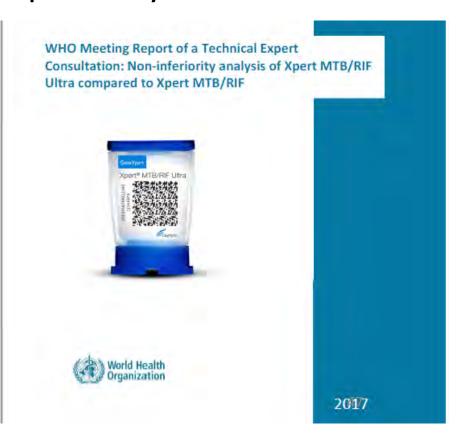
- Traditional TB diagnostic tools perform poorly in PLHIV
 - smear microscopy ---- 39%
 - Lowenstein Jenson culture --- 48%

GeneXpert MTB/RIF

For diagnosing MTB

Sensitivity = 88% (= solid culture)

Specificity = 99%


For rifampicin resistance Both S & S = 99 %

(WHO TB standard compendium 2017)

46

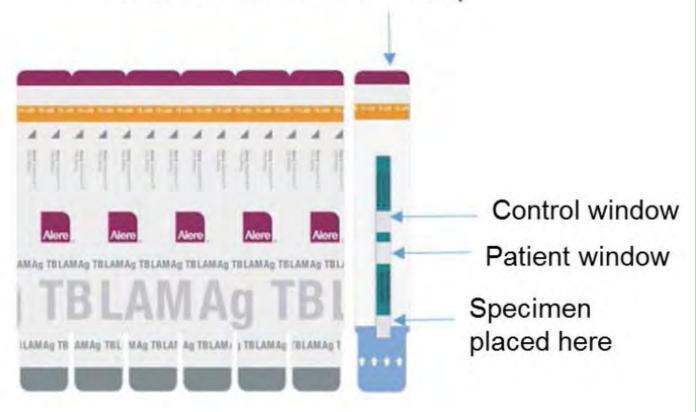
Xpert MTB/RIF Ultra

- Ultra performance approaches that of liquid culture
- Overall 5% higher sensitivity but 3.2% reduced specificity
- Benefit seen in most difficult cases
 - Smear –ve culture +ve cases (sensitivity ↑ 17%)
 - PLHIV (sensitivity ↑ 12%)
 - children
 - EPTB (esp TB meningitis)

Compendium of WHO guidelines and associated standards:

ensuring optimum delivery of the cascade of care for patients with tuberculosis

November 2017


33 WHO TB Standard of care

- WHO TB Standard 8. For persons living with HIV, the Xpert MTB/RIF
 Ultra assay should be used as an initial diagnostic
 test. The (LF-LAM) can be used to assist in the
 diagnostic process for HIV-positive patients who are
 seriously ill.
- WHO TB Standard 19. HIV testing should be routinely offered to all patients with presumptive TB and those who have been diagnosed with TB.
- WHO TB Standard 20. Persons living with HIV should be screened for TB by using a clinical algorithm.
- WHO TB Standard 21. Antiretroviral therapy (ART) and routine cotrimoxazole preventive therapy (CPT) should be initiated among all TB patients living with HIV, regardless of their CD4 cell count

LF-LAM – urine Lipoarabinomannan

(Sensitivity= 54%; Specificity = 90%)

Individual LF-LAM strip

Urinary LAM Ag should NOT be used as
A screening test
A diagnostic test

Except in 2 situations

- 1. S/S of TB and CD4<100
- 2. Seriously ill in-patients (4 danger signs: RR >30, HR >120, T >39°C, unable to walk unaided)

Given its limited sensitivity, urine LAM has been proposed as a "rule in" test but appears inadequate as a stand-alone "rule out" test for TB.

LAM improves outcomes!!

Volume 387, Issue 10024, 19-25 March 2016, Pages 1187-1197

THE LANCET

-Multicenter

- -2013 to 2014
- -Hospitalized pts with at least one TB -/S

	LAM group	No LAM group
No of pt	1257	1271
8 W mortality	261(21%)	315(25%)

Articles

Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial

Jonny G Peter PhD a, c, d, l, *, Lynn S Zijenah PhD e, *, Duncan Chanda MD a, h, m, *, Petra Clowes MD i, j, *,

- RRR 17%; ARR 4%
- Bedside LAM-guided initiation of anti-tuberculosis treatment in HIV-positive hospital inpatients with suspected tuberculosis was associated with reduced 8-week mortality.

Treatment

- -AntiTB regimen and duration (same as HIV-ve pts)
- -ART (When and what to start)
- -Drug-drug interaction

MAJOR ARTICLE

An Updated Systematic Review and Metaanalysis on the Treatment of Active Tuberculosis in Patients With HIV Infection

Faiz Ahmad Khan,¹ Jessica Minion,² Abdullah Al-Motairi,¹ Andrea Benedetti,^{3,4} Anthony D. Harries,^{5,6} and

Clinical Infectious Diseases 2012;55(8):1154–63

Conclusion

- OR for relapse 2 mth RIF Vs > 8 mth: 5.0
- OR for relapse 6 mth RIF Vs > 8 mth: 2.5
- OR for relapse No ARV Vs ARV: 14.3
- Restricting the analysis to ARV studies: nothing else mattered

1.5. The effectiveness of a TB treatment period of greater than 8 months compared to the standard 6-month treatment period for HIV co-infected patients with drugsusceptible pulmonary TB

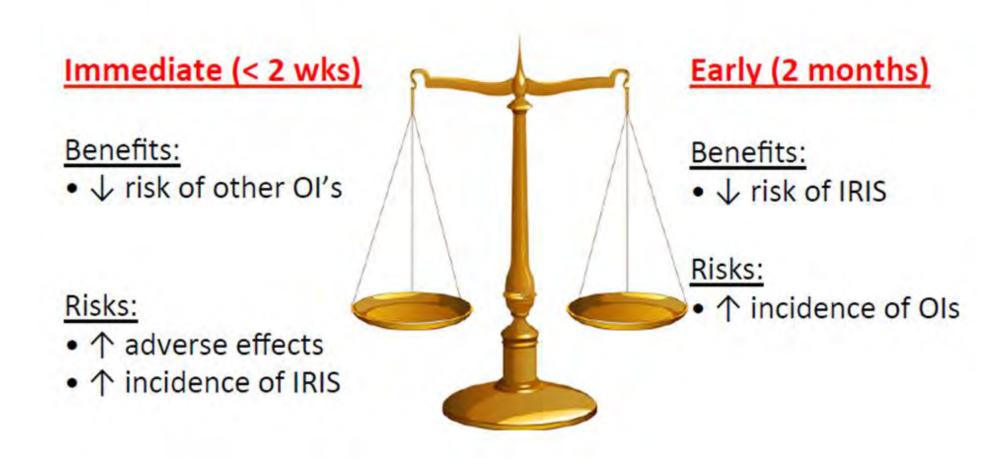
Recommendation:

In patients with drug-susceptible pulmonary TB who are living with HIV and receiving antiretroviral therapy during TB treatment, a 6-month standard treatment regimen is recommended over an extended treatment for 8 months or more (Conditional recommendation/very low certainty in the evidence).

TREATMENT OF TUBERCULOSIS

Guidelines for treatment of drug-susceptible tuberculosis and patient care

2017 UPDATE



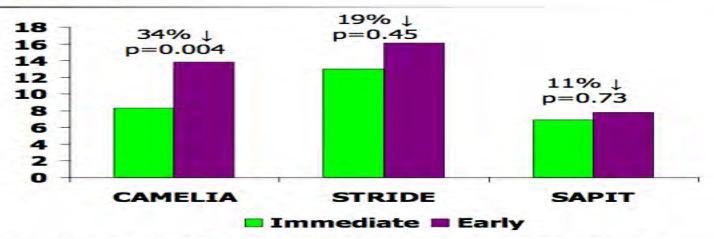
Treatment duration (expert opinion)

- 6 month for drug sensitive TB EXCEPT
 - Cavitary disease
 - month 2 sputum positive or
 - if PZA not included in the initial 2 months
- 9-12 month for bone & joint, CNS

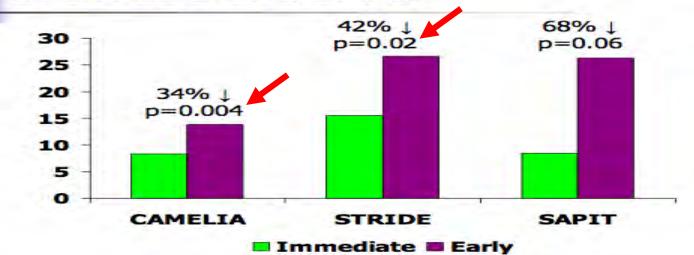
20/1/2018 Dr Kyaw Swar Lin, MMA Conference

Timing of ART

Key characteristics of trials of timing of ART during TB treatment


Study	Setting	Key enrollment criteria	Median CD4 (IQR)	Primary endpoint
CAMELIA	Cambodia	Smear +, CD4 < 200	25 (10 - 56)	Death
STRIDE	Multi-national	Clinical TB, CD4 < 250	77 (36 – 145)	AIDS or death
SAPIT	South Africa	Smear +, CD4 < 500	150 (77 – 254)	AIDS or death

AIDS 2010 abstract THLBB106, CROI 2011 abstract 38, CROI 2011 abstract 39LB


Key characteristics of trials of timing of ART during TB treatment

Study	Setting	Key enrollment criteria	Median CD4 (IQR)	Primary endpoint
CAMELIA	Cambodia	Smear +, CD4 < 200	25 (10 - 56)	Death
STRIDE	Multi-national	Clinical TB, CD4 < 250	77 (36 – 145)	AIDS or death
SAPIT	South Africa	Smear +, CD4 < 500	150 (77 – 254)	AIDS or death

Effect of ART timing on death (CAMELIA) or death/AIDS (STRIDE, SAPIT)

Effects of ART timing on outcomes in CAMELIA and patients with CD4 < 50 in STRIDE and SAPIT

WHO 2016 Guideline: when to start ART

4.3.5 Timing of ART for adults and children with TB

ART should be started in all TB patients living with HIV regardless of CD4 count (strong recommendation, high-quality evidence).¹

TB treatment should be initiated first, followed by ART as soon as possible within the first 8 weeks of treatment (strong recommendation, high-quality evidence).²

HIV-positive TB patients with profound immunosuppression (e.g. CD4 counts less than 50 cells/mm³) should receive ART within the first two weeks of initiating TB treatment.

ART should be started in any child with active TB disease as soon as possible and within 8 weeks following the initiation of antituberculosis treatment regardless of the CD4 cell count and clinical stage (strong recommendation, low-quality evidence).

Timing of Initiation of Antiretroviral Therapy in Human Immunodeficiency Virus (HIV)– Associated Tuberculous Meningitis

1374 d CID 2011:52 (1 June)

M. Estee Török,^{1,2} Nguyen Thi Bich Yen,³ Tran Thi Hong Chau,⁴ Nguyen Thi Hoang Mai,⁴ Nguyen Hoan Phu,⁴

	Immediate	Deferred ART	HR, P
Pts no	127	126	
CD4(median)	39	44	
9M mortality	76	70	1.15, 0.5
Grade 3 or 4 AE	90	89	0.84
Grade 4 AE	102	87	0.04

Conclusions.

Immediate ART initiation does not improve outcome in patients presenting with HIV-associated TBM. There were significantly more grade 4 adverse events in the immediate ART arm, supporting delayed initiation of ART in HIV-associated TBM.

British HIV Association guidelines for the management of TB/HIV co-infection in adults 2017

When to start ART

- We recommend that all individuals with TB should start ART as soon as is practicable, and within 8-12 weeks
 of the TB diagnosis. (GRADE 1A)
- We recommend that individuals with a CD4 cell count <50 cells/mm³ start ART as soon as is practicable and within 2 weeks. (GRADE 1A)
- We recommend against the early initiation (<2 months) of ART in individuals with CNS TB. (GRADE 1A)

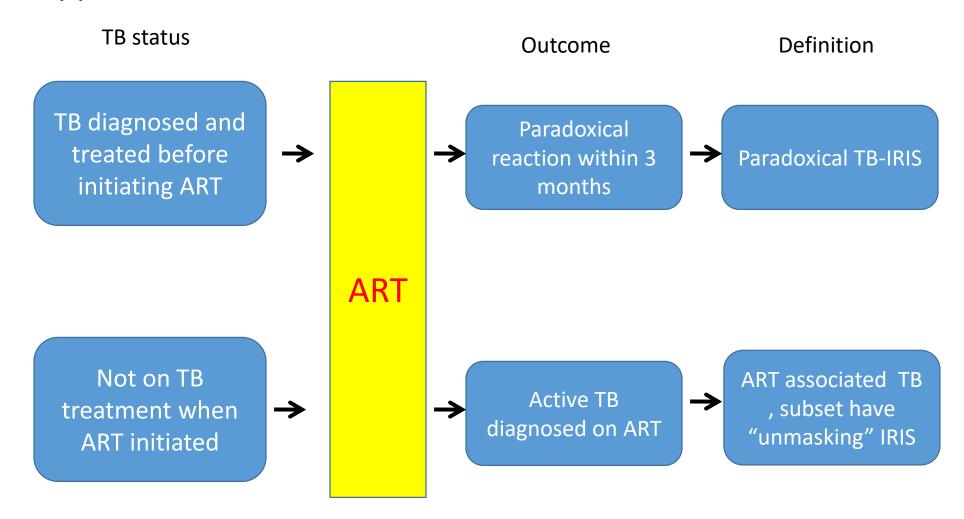
10

Drug-drug interactions (DDI)

Rifamycins & ART Rifampicin Rifabutin No problem No problem NRTIs RFB AUC ↓ 38% Efavirenz (EFV) EFV AUC ↓ 26% NVP AUC | 40-60% Nevirapine (NVP) No problem Etravirine/Rilpivirine ETR/RPV | 40-60% NNRTI AUC 1 37% PI AUC | 80-90% Pls unboosted RFB AUC ↑ 200% PI AUC | 60-75% RFB AUC ↑ 300% Pls boosted Raltegravir No problem Integrase AUC ↓ 40% No problem Dolutegravir Integrase AUC ↓ 40% CCR5 AUC | 60-70% ? No problem Maraviroc

Drug-drug interaction (DDI) b/t ART & AntiTB (Essentially b/t Rifampicin & NNRTI or PI)

- EFV --- No need to change dose
- NVP -not recommended (BUT still OK)
- LPV/r --- either rifampicin replaced by rifabutin 150mg OD
 - Or --- the dose of PI doubled (LPV/r from 2 bd to 4 bd)
- ATV/r not recommended
 - OD dose ---- subtherapeutic level of ATV
 - Double dosing ---- high rate of liver injury
 - And aslo because ATV can cause unconjugated hyperbilirubinemia which can be confused with DILI due to antiTB drugs)


Summary of ART options with rifamycinbased TB Rx

- EFV + 2NRTIs* (preferred option) +RIF (*Not TAF)
 - Standard EFV dose (600mg daily)
- RAL + 2NRTIs* + RIF
 - Standard RAL dose (400mg bd)
- DTG + 2NRTIs* + RIF
 - Double DTG dose (50mg bd)
- PI + 2NRTIs* + RBT
 - Decrease rifabutin dose 150mg/daily

Immune Reconstitution Inflammatory Syndrome/Immune Restoration Disease (IRIS/IRD)

- IRIS is a clinical condition caused by ART-induced restoration of pathogen-specific immune responses to opportunistic infections such as TB, resulting in either:
- the deterioration of a treated infection (paradoxical IRIS) or
- a new presentation of a previously subclinical infection (unmasking IRIS).
- Is a diagnosis of exclusion. It is often transient in duration but can last many months

IRIS: Types

Paradoxical TB IRIS: INSHI Case definition

A. Antecedent requirement

Diagnosis of TB

Initial response to TB treatment

B. Clinical Criteria (within 3 months of initiation, re-initiation or change)

Major criteria

New or enlarging nodes, focal involvement e.g. arthritis

New or worsening radiological features

New or worsening CNS TB

New or worsening serositis

Minor Criteria

New or worsening fever, night sweats, weight loss

New or worsening respiratory symptoms

New or worsening abdominal symptoms

C. Alternative explanations should be excluded if possible (Tm F, other OI, drug toxicity)

Risk of IRIS

- Low baseline CD4+ cell count (esp <50) and rapid recovery
- High baseline VL and rapid decline
- Type of OI (CMV, Crypto & TB) and high pathogen burden
- Short time interval between start of OI treatment and initiation of ART.
- prednisone or methylprednisolone have been used at a dose of 1–1.5 mg/kg, with gradual reduction after 1–2 weeks

Challenges in differential diagnosis of IRIS

ALTERNATIVE DAGNOSIS

Bacterial/fungal infections NTM and PCP Lymphoma KS

DRUG RESISTANCE

14/141 suspected TB-ISIS had MDR or rifampicin resistance

DRUG REACTION

Especially if HEPATIC involvement

Management of IRIS

- Mild to moderate ---- NSAID
- Severe --- prednisone at 1.5 mg/kg/day for 2 weeks followed by 0.75 mg/kg/day for 2 weeks ---- improves symptoms and quality of life

 Neither TB therapy nor ART should be stopped because both therapies are necessary for the long-term health of the patient

British HIV Association guidelines for the management of TB/HIV co-infection in adults 2017

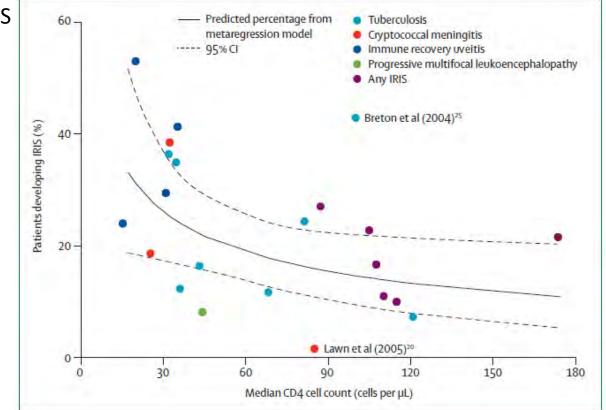
12 Immune reconstitution inflammatory syndrome

We recommend the use of corticosteroids tapered over 4–6 weeks in symptomatic IRIS. (GRADE 1C)

There is no consensus on what is an optimal and effective dose to use, although prednisone or methylprednisolone have been used at a dose of 1–1.5 mg/kg, with gradual reduction after 1–2 weeks. **Other treatment options:**

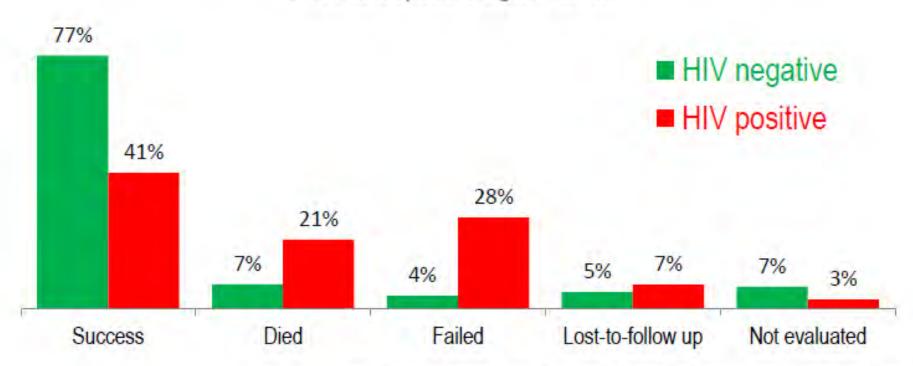
Recurrent needle aspiration of lymph nodes or abscesses to remove pus and caseous material is appropriate if they become tense and/or inflamed. This can prevent spontaneous rupture, which may lead to long-term sinus formation and scarring

Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis **Lancet Infect Dis 2010: 10: 251-61*


Monika Müller, Simon Wandel, Robert Colebunders, Suzanna Attia, Hansjakob Furrer, Matthias Egger, for IeDEA Southern and Central Africa

54 Cohorts, 13 103 pts, the relation between CD4 and IRIS **Previously diagnosed OI**

Disease	IRIS	Mortality
CMV	37.7	
Crypto meningitis	19.5	20.8
PMLE	16.7	
ТВ	15.7	3.2
Herpes zoster	12.2	
Kaposi's sarcoma	6.4	

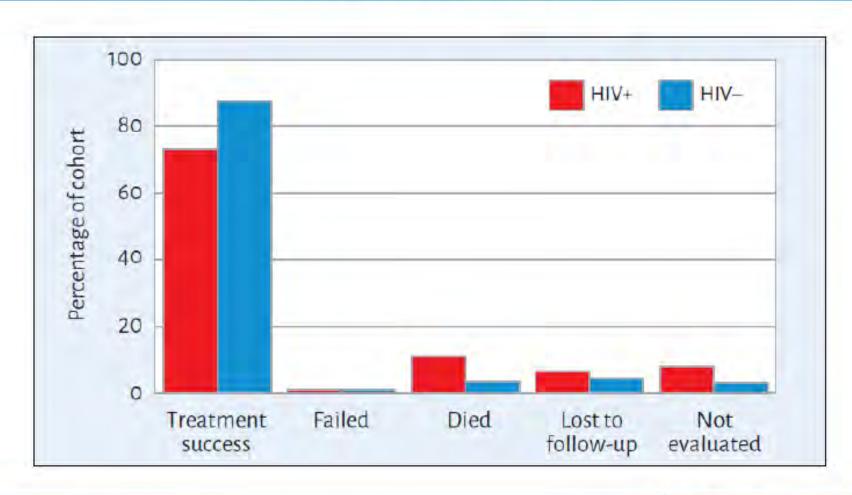

Undiagnosed OI,

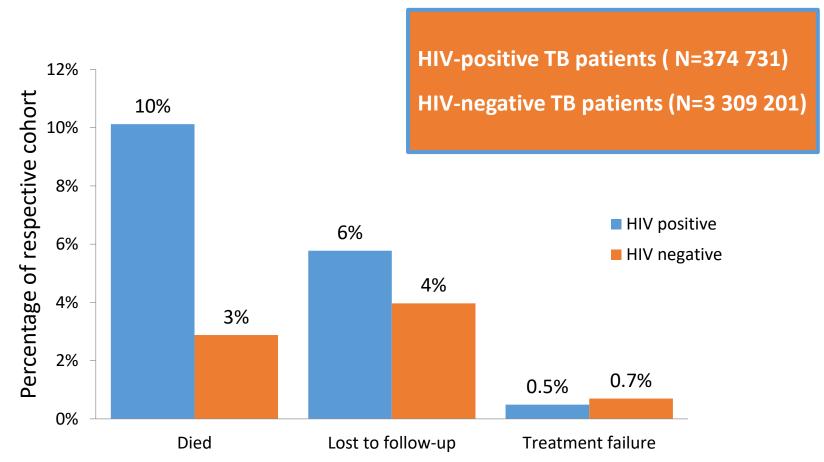
-Any IRIS = 16.1%

People with TB/HIV are seven times at higher risk of failing treatment and three times at higher risk of dying than people with TB disease

Treatment outcomes of new TB and relapses by HIV status, WHO European Region, 2015

Source: Tuberculosis surveillance and monitoring in Europe 2017, European Centre for Disease Prevention and Control / WHO Regional Office for Europe.





TB treatment outcomes by HIV status, globally, 2013

TB Treatment Outcomes by HIV status in 14 reporting Countries*, 2014 Cohort

^{*}TB treatment outcomes by HIV status not reported: Angola, DR Congo, Ethiopia, Mozambique, Malawi, Zambia

Bad outcomes: How to improve it?

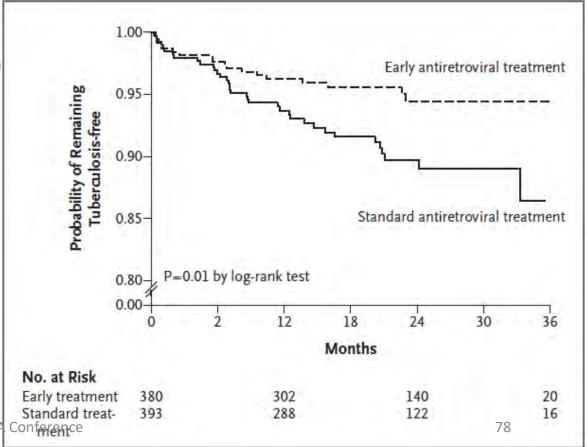
- Early ART
- Empirical antiTB?
- ART + IPT ?

ORIGINAL ARTICLE

Early versus Standard Antiretroviral Therapy for HIV-Infected Adults in Haiti

Patrice Severe, M.D., Marc Antoine Jean Juste, M.D., Alex Ambrois

Early: ART started CD4 200 -350


Standard: ART started when CD4<200

About 400 pts in each group

Mean CD4 about 280 in each group

There were 36 incident cases of tuberculosis in the standard-treatment group, as compared with 18 in the early-treatment group (HR 2)

Dr Kyaw Swar Lin, MMA Conference

START: Results – does early ART protect against TB?

Endpoint		mediate ART (n = 2326)	D	eferred ART (n = 2359)	HR	<i>P</i> Value
	N	Rate/100 PY	N	Rate/100 PY	(95% CI)	Pvalue
Serious AIDS-related event	14	0.20	50	0.72	0.28 (0.15-0.50)	< .001
Serious non-AIDS-related event	29	0.42	47	0.67	0.61 (0.38-0.97)	.04
All-cause death	12	0.17	21	0.30	0.58 (0.28-1.17)	.13
Tuberculosis	6	0.09	20	0.28	0.29 (0.12-0.73)	.008
Kaposi's sarcoma	1	0.01	11	0.16	0.09 (0.01-0.71)	.02
Malignant lymphoma	3	0.04	10	0.14	0.30 (0.08-1.10)	.07
Non-AIDS-defining cancer	9	0.13	18	0.26	0.50 (0.22-1.11)	.09
CVD	12	0.17	14	0.20	0.84 (0.39-1.81)	.65
New Engl J Med 2015:373:795	Dr Ky	aw Swar Lin, MMA	Conferen	ice		

REMEMBER: Key Results

 Empiric TB treatment had no differential impact on risk of death or unknown status at 24 wks of follow-up vs IPT

Primary Endpoint, n (%)	ART + Empiric TB Treatment (n = 424)	ART + IPT (n = 426)
Death	20 (4.8)	22 (5.2)
Unknown status	2 (< 0.5)	0 (0)
All primary endpoints	22 (5.3)	22 (5.2)

Absolute risk difference: -0.06% (95% CI: -3.05% to 2.94%; P = .97)

- Time to death or unknown status did not differ by treatment strategy
- IPT treatment was associated with reduced time to confirmed or probable TB (P = .01) vs empiric TB treatment
- Verified TB cases more frequent in empiric TB treatment arm vs IPT arm (33/424 vs 19/426, respectively)

Impact of three empirical anti-tuberculosis treatment strategies for people initiating antiretroviral therapy

A. Van Rie,* D. Westreich,* I. Sanne^{†‡}

NNT to avert one death
Pragmatic =21
REMEMBER=19
PROMT=13

Empiric TB therapy did not reduce mortality at 24 weeks compared to INH

- -Mortality low in both arms
- -No differences across arms by stratification factors

Impact of three empirical anti-tuberculosis treatment strategies for people initiating antiretroviral therapy JTLD.2014 A. Van Rie, * D. Westreich, * I. Sanne^{†‡} 10.0 □ Pragmatic 9.0 8.0 ■ REMEMBER 7.0 5.7 ■ PrOMPT 6.0 5.0 3.6 4.0 2.5 3.0 1.7 2.0 1.1 0.6 1.0 0.0 Deaths averted. Incident TB averted,

(Pragmatic: putting all PLHIV with < 100 CD4 on empiric TB treatment)

6-25% deaths and 11-57% incident TB averted

Isoniazid plus antiretroviral therapy to prevent tuberculosis: a randomised double-blind, placebo-controlled trial

Molebogeng X Rangaka, Robert J Wilkinson, Andrew Boulle, Judith R Glynn, Katherine Fielding, Gilles van Cutsem, Katalin A Wilkinson,
Rene Goliath, Shaheed Mathee, Eric Goemaere, Gary Maartens

Lancet 2014; 384: 682–90

2008 -2011, IPT or placebo 12 months

37% reduction in incident TB
The effect of isoniazid preventive therapy was NOT restricted to patients who were positive on TST or IGRA

	IPT	Placeb	HR
No of pts	662	667	
CD4	218	214	
ART coverage (%(70	74	
Incident TB	37	58	0.63
SE	19	10	1.9

IPT Effectiveness Related to ART

TB Incidence in 11,026 HIV-infected patients in Brazil

	No INH	Yes INH
No ART	4.01/100	1.27/100
	person years	person years
Yes ART	1.90/100 person years	0.80/100 person years

Source: Golub JE, et al., Johns Hopkins University 2007.

76% reduction with both INH and ART when adjusted for age, previous TB diagnosis and CD4 count at baseline

15 July 2004, 15th IAS Conference Bangkok

Mandela urges action to fight TB

By Chris Hogg BBC, Bangkok

Nelson Mandela has made an appeal at the international Aids conference for a greater effort to fight tuberculosis.

We can't fight Aids unless we do much more to fight TB as well

Nelson Mandela

Mandela said fighting TB should be a
Dr Kyaw Swar Lig, MMA Conference

Any Questions
OR
Comments?