Management of Shock

Dr. Ye Myint
MBBS; DA (London); FRCA
Consultant in Anaesthesia and Critical Care Medicine, Barnsley Hospital.
Hon Senior Lecturer, University of Sheffield, UK.
Director of Postgraduate Medical Education.
• Different types of shock
• Early detection
• General Management
• Pathophysiology
• Management
• IV fluid
Different types

• Distributive shock
 – Anaphylactic shock
 – Septic shock
• Cardiogenic shock
• Hypovolaemic shock
 – Haemorrhagic shock
 – Fluid loss/ Inadequate intake
• Obstructive shock
 – Valve thrombosis, cardiac tamponade
• Combined
Resuscitation Guidelines 2010

• Prevent Cardiac arrest
 – Recognition of patients at risk of cardiac arrest
 – Use Track & trigger system (Early warning scores)
 • BP, HR,
 • Respiratory rate, O2 saturation
 • Urine output,
 • Conscious level – AVPU
 • Temp
 – Rapid response system (Out reach team)
 – ABCDE approach
 – Use structured communication (SBAR)
 • Situation, Background, Assessment, Recommendation
Early warning Scoring system

- National EWS
- Local (Barnsley)
- Inadequate O2 delivery despite
 - Normotensive
 - Hypertensive
<table>
<thead>
<tr>
<th>PHYSIOLOGICAL PARAMETERS</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration Rate</td>
<td>≤8</td>
<td></td>
<td>9 - 11</td>
<td>12 - 20</td>
<td>21 - 24</td>
<td>≥25</td>
<td></td>
</tr>
<tr>
<td>Oxygen Saturations</td>
<td>≤91</td>
<td>92 - 93</td>
<td>94 - 95</td>
<td>≥96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Supplemental Oxygen</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>≤35.0</td>
<td>35.1 - 36.0</td>
<td>36.1 - 38.0</td>
<td>38.1 - 39.0</td>
<td>≥39.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP</td>
<td>≤90</td>
<td>91 - 100</td>
<td>101 - 110</td>
<td>111 - 219</td>
<td>≥220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Rate</td>
<td>≤40</td>
<td>41 - 50</td>
<td>51 - 90</td>
<td>91 - 110</td>
<td>111 - 130</td>
<td>≥131</td>
<td></td>
</tr>
<tr>
<td>Level of Consciousness</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>V, P, or U</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>HR</td>
<td></td>
<td>41-44</td>
<td>55-99</td>
<td>60-90</td>
<td>91-110</td>
<td>111-129</td>
<td>130</td>
</tr>
<tr>
<td>BP syst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><85</td>
<td>85-95</td>
<td>96-160</td>
<td>161-190</td>
<td>>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><10</td>
<td>10-20</td>
<td>21-25</td>
<td>26-34</td>
<td>35+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Saturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 94%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td><35.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conscious level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEWS SCORE</td>
<td>FREQUENCY OF MONITORING</td>
<td>CLINICAL RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Minimum 12 hourly</td>
<td>• Continue routine NEWS monitoring with every set of observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total: 1-4</td>
<td>Minimum 4-6 hourly</td>
<td>• Inform registered nurse who must assess the patient;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Registered nurse to decide if increased frequency of monitoring and/or escalation of clinical care is required;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total: 5 or more</td>
<td>Increased frequency to a minimum of 1 hourly</td>
<td>• Registered nurse to urgently inform the medical team caring for the patient;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>• Urgent assessment by a clinician with core competencies to assess acutely ill patients;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 in one parameter</td>
<td></td>
<td>• Clinical care in an environment with monitoring facilities;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total: 7 or more</td>
<td>Continuous monitoring of vital signs</td>
<td>• Registered nurse to immediately inform the medical team caring for the patient – this should be at least at Specialist Registrar level;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emergency assessment by a clinical team with critical care competencies, which also includes a practitioner(s) with advanced airway skills;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Consider transfer of Clinical care to a level 2 or 3 care facility, i.e. higher dependency or ITU;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anaphylaxis

• Risk factors for severe anaphylaxis
 – Asthma
 – Medication
 • β blocker (May need Glucagon 1 mg IV)
 • Angiotensin converting enzyme inhibitors, NSAID
 – Acute respiratory infection
 – Mastocytosis
 – Alcohol, emotional stress, fever
Anaphylactic shock

- Call for help
 - Atypical presentation during anaesthesia
- Check A, B, C
- High flow O2 (100% O2)
- CPR if required
- Stop giving the triggering drug
 - Latex, Food, blood products
Anaphylactic shock

- **Adrenaline**
 - As early as possible
 - 0.5-1 mg IM (repeat 5 minutes)
 - or 300 mcg IM self inject
 - 50-200 mcg IV increments

- **IV fluid**

- **Legs elevated, or recovery position**
Anaphylactic shock

- **Second line treatment**
 - Antihistamine
 - Chlorphenamine 10 mg IV or IM
 - Hydrocortisone 200 mg IV
 - Bronchodilator

- **Catecolamine infusion**

- **Check Arterial blood gases**

- **Check airway oedema**
Anaphylactic shock

- Bronchospasm
 - Salbutamol (nebulizer or IV)
 - Ipratropium
 - IV Aminophylline or Magnesium sulphate
- Observe for delayed problems (Bi-phasic)
- Oral antihistamine & corticosteroid 3 days
- Arrhythmias,
- Coronary spasm, ACS
- Further investigation (allergy diagnosis)
- Incident reporting
General Investigations

• Bedside
 – ECG
 – Haemoglobin
 – Arterial blood gases,
 – Lactate
 – Ultrasound,
 – Echocardiogram
General Investigations

• Bedside
 – ECG
 – Haemoglobin
 – Arterial blood gases,
 – Lactate
 – Ultrasound,
 – Echocardiogram
General Investigations

• Laboratory
 – Full blood count
 – Coagulation, D dimer
 – U & E
 – LFT
 – Cardiac enzymes
 – Cultures (urine, blood, sputum)
 – Toxicology
General Investigations

- Radiology
 - CXR
 - Abdominal X ray
 - Trauma series radiology
 - CT scan
 - Angiography
General Management of Shock

- Supply Oxygen
- Vascular access
- Volume resuscitation
- Vasoactive drugs
- Manage precipitating illness/ injury
- Monitoring§
Fluid responsiveness

- **Static measure**
 - Intra cardiac pressure
 - CVP (Limitation)
 - Pulmonary artery occlusion pressure
 - Cardiovascular volume
 - Echo – LVEDV
 - Oesophageal Doppler
 - Corrected Flow time
 - Peak velocity
Fluid responsiveness

- Dynaemic measure
 - Responsive to fluid challenge
 - Passive leg raising test
 - Aortic flow
 - Pulse pressure
 - Response to IPPV
 - Systolic pressure variation
 - Pulse pressure variation
 - Stroke volume variation
CVP

- Frank Starling law
- CVP does NOT indicate volume status
- Normal CVP does not exclude hypovolaemia
- High CVP
 - May need fluid, may respond fluid challenge
- Trend may be useful
Other tools to assess Volume status

• Non-invasive cardiac output
 – Pulse contour analysis
 – Oesophageal doppler
 – Thoracic bio-impedance
• Systemic arterial – venous CO2 difference
• Ultrasound, Echocardiogram
Cardiogenic shock

• Inadequate blood flow despite adequate intravascular volume
• Sustained hypotension with impaired cardiac function
• Systolic <90 mmHg (> 30 min)
 • Cardiac index < 2.2L/min/ m2
 • PAOP >15 mmHg
• Clinical (JVP, basal crackles)
• CXR, ECG, Cardiac enzymes
• Echo (choice)
Cardiogenic shock
Causes

• Acute MI
 – Pump failure
• Mechanical complications
 – MR, VSD, Tamponade
• Others
 – Cardiomyopathy
 – Myocarditis
 – Cardiac contusion
 – Septic shock
 – Subarachnoid haemorrhage
 – Massive PE
• Systolic dysfunction
 – SV, Cardiac Output reduced
 – Hypotension
 – Reduced coronary perfusion pressure
 – Ischaemia

• Diastolic dysfunction
 – Pulmonary congestion
 – Hypoxaemia- Ischaemia

• RV infarct- Give Fluid (needs high filling pressure)
Cardiogenic shock Management

• Urgent echocardiogram
• Restore haemodynamics, oxygenation
 – Avoid arrhythmias
• Without significant pulmonary oedema
 – O2
 – Fluid challenge
 – Vasopressor
• With pulmonary oedema
 – O2, CPAP (NIV)
 – Inotropes (Noradrenaline, Dobutamine)
Cardiogenic shock Management

- Vasopressin
- Phosphodiesterase inhibitors (Milrinone)
 - RV infarct
- Levosimendan ?? (calcium sensitizer)
 - Coronary vasodilatation
- Mechanical therapy
 - Intra aortic balloon pump
- Revascularization
 - Thrombolyse, PCI, CABG
Cardiogenic shock
Pathophysiology- Microcirculation

- Microcirculatory function deteriorated during shock
 - Disturb flow to heart & brain
 - Vital organs
- Multi-organ failure
- Monitor
 - Cardiovascular MRI
 - Hand held video microscopy – sublingual microcirculation
Cardiogenic shock
Pathophysiology-

• Persistent inflammatory response (SIRS) in severe heart failure
• Increased vascular permeability
• Increased blood viscosity
• Hypercoagulopathy (platelet activation)
• Endothelial dysfunction (reduced NO)
Vasoactive agents

• Angiotensin II inhibitors
 – Improve microcirculation
• Intravenous Nitroglycerin
• Adrenaline - reduce microcirculatory flow
 – Ischaemic vital organs
Fluid resuscitation - Cardiogenic shock

- Fluid loading
- Risk - tissue oedema
- Fluid guided by
 - CVP (No value)
 - Sublingual flow
 - Oxygen extraction ratio - hypothenar eminence
Heart rescue (ACS)

- Coronary revascularization
 - Fibrinolytic therapy
 - PCI (within 90 min)
 - CABG
- Cardiac surgery (VSD, Acute MR)
- Mechanical circulatory support
 - Intra-aortic balloon pump
- LMWH
- Antiplatelets
Post cardiac arrest

- Therapeutic hypothermia
 - 12-24 hours
 - 32-34 degree C
 - Adverse Microcirculatory effect
 - 36 d C (NEJM, December 2013)
Hypovolaemic shock

- Trauma
- Non trauma
 - Medical
 - Obstetrics
Trauma (without head injury)

- **C** (control bleeding) - ABC
- Damage controlled resuscitation
 - Hypotensive resuscitation
 - Damage controlled surgery
 - Control haemorrhage & contamination
 - Definitive repair later
 - Haemostatic resuscitation
 - Correct coagulopathy (early), hypothermia, acidosis in ICU
Hypotensive resuscitation

• Permissive hypotension
 – End point of resuscitation 70-80mmHg
 • (Cannon & Fraser, JAMA 1918)
 – Systolic BP 90 mmHg (80-100 mmHg),
 – except head injury-Systolic 120mmHg
 – Palpable radial pulse
• IV cannula (Intra-osseous route)
• Minimal IV fluid
 – Hypertonic saline
IV fluid

• Isotonic crystalloids
 – Ischaemia, reperfusion injury
 – Abdominal hypertension, Abdominal compartment syndrome
 – ARDS, Multi-organ failure
 – Coagulopathy
Haemostatic resuscitation

• Acute Traumatic Coagulopathy (TIC)

• Early use of Tranexamic acid
 • (CRASH 2 trial, Lancet 2010)
 – Within 3 hours
 – 1g over 10 min
 – 1 g over 8 hours
 – Cost effective
IV fluid - Hypertonic saline

- Rapid restoration of intravascular volume
- Reduce intracranial pressure
- Reverse endothelial swelling (microcirculation)
- Immunomodulation -
 - Less cytokines
- Lower ARDS, Renal failure, coagulopathy
- Meta-analysis - Increased survival
Lethal triad
(bloody vicious cycle)

- Hypothermia (keep >35 ° C)
 - More bleeding
 - Affect clotting factors
 - Platelet dysfunction
 - sequestration in liver & spleen
- Acidosis
 - Reduce cardiac output (contractility)
 - Dysrhythmia
 - bleeding
- Coagulopathy
Haemostatic resuscitation

- High FFP: RBC ratio (early)
- Platelets
- Cryoprecipitate
- Calcium
 - Keep >1.15 mmol/L
- Activated Factor 7
- Prothrombin complex?
Trauma with head injury

- **ABC (O2 + Cervical spine)**
 - Prevent secondary injury
- **Maintain cerebral perfusion pressure 60-70 mmHg**
 - Keep systolic $>$ 90 mmHg
 - Assume ICP of 20 mmHg in unconscious
- **Role of hypertonic saline**
 - More effective than Mannitol
- **Early use of Vasopressors**
Tolerance to anaemia

- Do not use 10/30 rule
- Restrictive transfusion strategy
- Clinical risk factors (decrease tolerance)
 - CAD
 - Impaired myocardial contractility/ Failure
Microvascular bleeding

- PT/ APTT >1.5 – give FFP
- Platelets <50-100 – give platelets
- Fibrinogen <1.5 g/L – give Cryoprecipitate
 - <2 g/L in Obstetric
 - One adult dose raise Fibrinogen by 1 g/L
 - Consider Fibrinogen concentrate

- Dying from bleeding (Activated Factor 7)
Bleeding patient

• To reverse Warfarin
 – Vit K +/- Prothrombin Complex Concentrate
 – FFP when PCC is unavailable

• Give Platelets
 – Expect platelet <50 after 2 blood volume replacement
 – Give Platelets when count is <50
 – Adult dose raise platelets by 20
Massive Blood Transfusion

- Replacement of > 1 blood volume (5L) in <24 hr.
- 50% blood volume lost in 3 hours
- Loss 150 ml/min
- Pathophysiology
 - Dilution / consumption
 - DIC
 - Systemic fibrinolysis
 - Platelet dysfunction
Therapeutic goals

• Maintain tissue perfusion & oxygenation
 – Restore blood volume & Hb
• Stop bleeding (source)
 – Ultrasound, CT scan
• Correct coagulopathy
• Shock pack box
 – 2 Units of blood + 2 units FFP
• Fresh blood (< 14 days old)
Management

• C – ABC
 – O2, 2 IV cannulae
• Inform
 – Blood bank
 – Haematology laboratory
 – Haematologist,
 – Surgeons
 – ICU consultants/ Anaesthetists
Accept hypotension

- Multiple trauma with active bleeding
- Penetration injury
- Major vessel or cardiac injury
- Do not give large volume of fluid
- Can feel a palpable pulse?
Management

- Colloid/ crystalloid
- Blood transfusion
- Keep the patient warm
 - Avoid exacerbating coagulation problems
- Investigations
Investigations

• FBC
 – Haematocrit
 – Platelet count

• Coagulation screen
• U & E
• Request blood & blood products
• Arterial Blood Gases
Blood Transfusion Guidelines

- Should not transfuse if Hb is > 10 g/dl
- A strong indication - Hb < 7 g/dl
- Hb between 8 - 10 g/dl is safe even for those with cardiorespiratory disease
- Symptomatic patients should be transfused
Recent British guidelines (2012) Critically Ill patients

- Transfusion threshold 70g/L
 - trigger not > 90 g/L
 - Target 70-90 g/L

- Traumatic brain injury - Target 70-90 g/L

- Single unit transfusions- recommended (especially in non-bleeding patients)
Recent British guidelines (2012)
Critically Ill patients

- Subarachnoid Haemorrhage - 80-100 g/L
- Ischaemic stroke - maintained > 90g/L
- ICS - maintained > 80-90 g/L
Summary

- Initial resuscitation & prevention of further bleeding
- Diagnosis & monitoring of bleeding
- Rapid control of bleeding
- Management of bleeding & coagulation
- Tissue oxygenation, fluid & hypothermia
Summary

- Damage controlled resuscitation
- Permissive hypotension
- Haemostatic resuscitation
 - Massive blood transfusion
Obstructive shock

- Support (ABC)
- Treat the cause (Urgent)
 - Cardiac tamponade
 - PE
 - Thrombolysis
 - Anticoagulation
 - Thrombectomy
Septic shock

- Hypovolaemia - from fluid loss
- Maldistribution - from vasodilatation
 - Reduce peripheral vascular resistance
- Increased permeability - tissue oedema
- Reduced Contractility - Myocardial depressant factors
 - Ischaemia
- Late - mitochondrial failure
 - Fluid fail to improve microcirculation
Septic Shock

• Surviving sepsis campaign (2012)
• Early goal directed therapy (Rivers 2001NEJM)
 – First 6 hours
 – Fluid challenge
 – MAP >65 mmHg (vasopressors)
 • Noradrenaline
 – CVP goal 8-12 mmHg (Limited Value)
 – Central venous O2 saturation
 • keep >70%
 • Fluid, (Blood transfusion), Dobutamine

• Sepsis bundle
• Haemoglobin 7-9g/dl
Septic Shock

- Early recognition
- 2 or > blood culture
- Early & adequate antibiotic therapy (within 1 hour)
 - De-escalation therapy
- Source control
- Early hemodynamic resuscitation support
Septic Shock

• Corticosteroids
 – Hydrocortisone 50 mg IV 6 hourly

• Metabolic support
 – Glycaemic control – 8-10 mmol/L
 • NICE SUGAR study NEJM
 • SSC – Maintain below 10 mmol/L
 – Early enteral nutrition
 – Immuno nutrition
Septic Shock

• Respiratory support
 – Tidal volume 6 ml/Kg
 – Limit pressure <30 cm H2O
 – Permissive hypercarbia
 – Adequate PEEP
 – Consider Prone -ARDS
 – 30-45 d head up

• Renal support

• Stress Ulcer prophylaxis

• DVT prophylaxis (daily assessment)
Management of septic shock

- **AB (Correct low SaO2 - High flow O2)**
- **C- Circulation**
 - correct hypovolaemia (colloid, crystalloid)
 - correct pump failure
 - early goal directed therapy
 - correct coagulopathy
- **Specific (antibiotics)**
- **Supportive measures**
Sepsis Six- FABULOS sticker (Audit)

- F - Fluid
- A – Antibiotics
- B - Blood culture (before antibiotic)
- U - Urine
- L – Lactate
- O – Oxygen
- S – Sepsis Six
Central Venous O2 Saturation

• Global tissue hypoxia may persist after resuscitation
• Normal mixed venous O2 saturation (Sv O2 65-75%)
• Low SvO2 = Low O2 delivery or demand exceed the supply
Noradrenaline

• Improve MAP
• Increase GFR
• Improve renal function

• Adrenaline use should be limited
Vasopressin

- Relative deficiency
- V1a receptors

- Vasopressin 0.01- 0.04 units/min
- Terlipressin every 6 hr
Dobutamine

• Combined with N-Adrenaline
• 5 -20 mcg/kg/min (septic shock)
Adrenaline

- Alone
- combinations
IV Fluid

- Use fluid as a drug
- NICE guidelines (December 2013)
- Crystalloids vs colloid
- Normal Saline
- Balanced salt solution
 - Hartmann
- Colloid
 - HES
 - Albumin
Normal Saline

- Abnormal
- Hyper chloaemic acidosis
 - Renal vasoconstriction
- Hypernatraemia
- More cytokines released
- Risk of renal failure
Balanced salt solution

- More physiological
- Choice
Colloid

- Avoid HES (Renal failure)
- Albumin
 - Do not use in head injury
De-resuscitation

- Fluid overload - worse outcome
- Ebb Phase
- Persistent Ebb phase
 - Impaired fluid mobilization
- Flow Phase
 - Conservation fluid
 - Diuretics
 - Renal replacement therapy (CVVH) - Negative balance
An Early Warning System

<table>
<thead>
<tr>
<th>Score</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>< 40</td>
<td>41-50</td>
<td>51-100</td>
<td>101-110</td>
<td>111-130</td>
<td>> 131</td>
<td></td>
</tr>
<tr>
<td>Resp rate</td>
<td>≤ 8</td>
<td>9-14</td>
<td>15-20</td>
<td>21-29</td>
<td>≥ 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>≤ 35.0</td>
<td>35.1-36</td>
<td>36.1-38</td>
<td>38.1-38.5</td>
<td>≥ 38.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS level</td>
<td>Unresp</td>
<td>Pain</td>
<td>Voice</td>
<td>Alert</td>
<td>New confusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine output</td>
<td><10ml/hr</td>
<td><0.5ml/kg/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td><70</td>
<td>71-80</td>
<td>81-100</td>
<td>101-199</td>
<td>>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alert Plan of Assessment

Immediate Assessment, Monitoring and Treatment
A-B-C-D-E

Remember:
- airway adjuncts, oxygen, bag-valve-mask ventilation, fluids, recovery position, blood glucose, monitoring
- Call for help?

Full Patient Assessment
- Review patient notes and charts
- Obtain patient history
- Perform a systematic examination
- Review results of routine investigations
- Call for help?

Decisions and Planning
- Is the patient improving?

Yes
- Do you have a diagnosis?
 - Yes
 - Call for help?
 - No
 - Re-assess ABCs
 - Call for help

No/Unsure
- Special Investigations?
 - Call for help
 - DEFINITIVE CARE

No
- MANAGEMENT PLAN