
Sarcopenia

TNT GERIATRIC 2.0 SESSION 3

enia

Loss of muscle mass

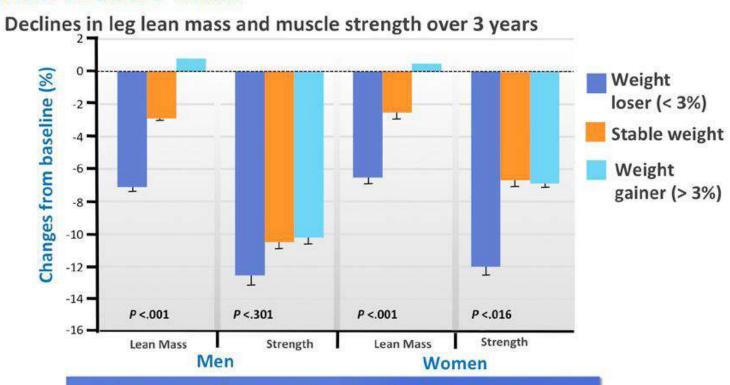
Dynapenia

Loss of power;
Force X velocity

Kratopenia (Thinamopenia)

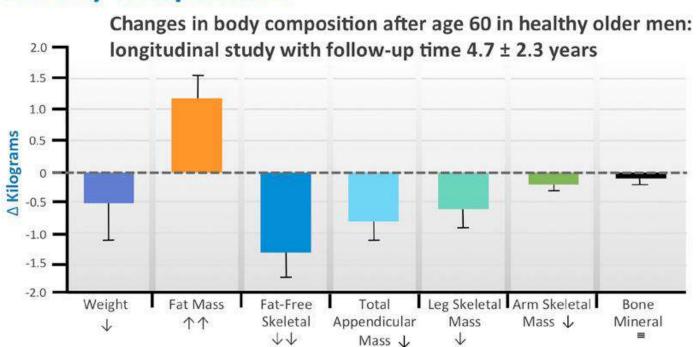

Loss of force ie strength

Learning objectives


- 1. Explain complex effects of aging on muscle mass and function.
- 2. Review recent definitions of sarcopenia.
- 3. Describe the complex causes and consequences of sarcopenia.
- 4. Determine how nutrition intervention can impact the incidence and course of sarcopenia.

inChianti Study: muscle mass and function decrease with aging

Cross-sectional comparisons: three measures of muscle function and one of muscle mass in men and women



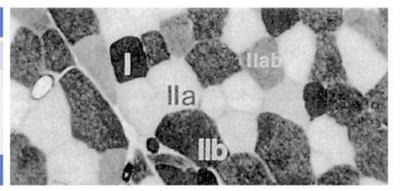
Health ABC Study: muscle strength declines more than muscle mass

Older men and women lost strength over time; men lost almost twice as much strength as women

Stable body weight masks age-related changes in body composition

The 0.5 kg decrease in body weight resulted mainly from a combined

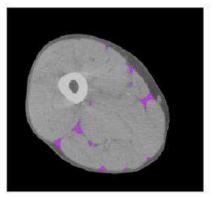
- decrease in fat-free body mass (-1.4 kg) and
- increase in fat mass (+ 1.2 kg)

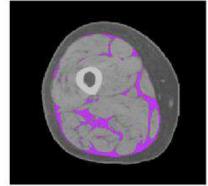

Changes in muscle fibers impact strength, power

Muscle tissue includes type 1 (slow) and type 2 (fast) fibers

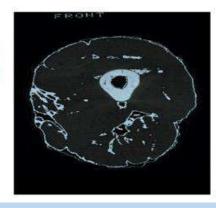
- Slow fibers produce sustained but weak forces (low strength, power)
- Fast fibers produce strong forces for a short time (high strength, power)

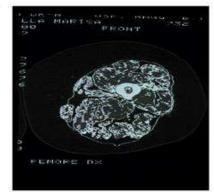
With aging, there is a net conversion from type $2 \rightarrow$ type 1 fibers


Little force for a long time		
Slow twitch	Type 1	
Fast twitch	Type 2a Type 2x	
	Type 2b	



With advancing age, there is an overall loss of strength and power


Health ABC Study: inter- and intra-muscular fat increase even with stable body weight


Thigh cross-section view (magnetic resonance)

Thigh cross-section view (computed tomography)

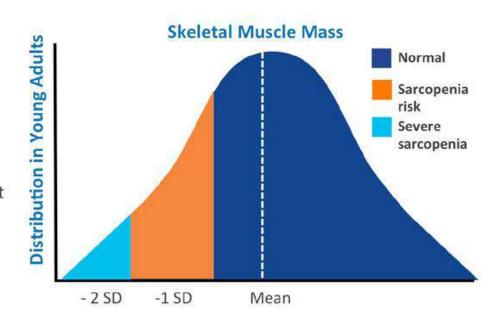
Low muscle strength predicts mobility disability

Older adults aged 70-89 years (n=406)

 Lower grip strength at baseline was associated with increased risk for developing mobility disability

 Mobility disability was defined as inability to walk 400 m in ≤ 15 minutes

 Adults with the lowest grip strength were 6 times more likely to develop mobility disability compared with those in the highest quartile of (sex-specific) grip strength (p<0.01)



Learning objectives

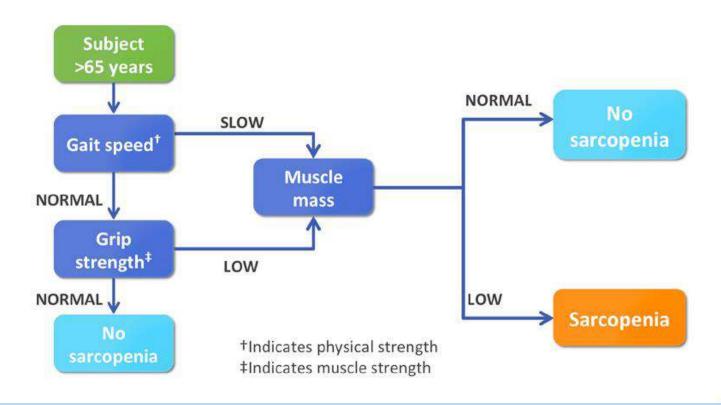
- 1. Explain complex effects of aging on muscle mass and function.
- 2. Review recent definitions of sarcopenia.
- 3. Describe the complex causes and consequences of sarcopenia.
- 4. Determine how nutrition intervention can impact the incidence and course of sarcopenia.

Classic sarcopenia definition uses muscle mass

- Appendicular fat-free mass (kg/m²)*
- Total fat-free mass (kg/body weight in kg)
- * Appendicular muscle weight (in kg) divided by height (in meters) squared = (kg/m)

This sarcopenia definition based on skeletal muscle mass parallels the definition of osteopenia/osteoporosis based on bone mineral density.

2010 European consensus definition of sarcopenia (EWGSOP*)



A syndrome characterized by progressive and generalized loss of skeletal muscle mass and function with a risk of adverse outcomes, such as physical disability, poor quality of life, and death

Stages of Sarcopenia using EWGSOP* definition

STAGE	MUSCLE MASS	MUSCLE STRENGTH	PERFORMANCE
Pre-sarcopenia	\downarrow		
Sarcopenia	\downarrow	V	OR ↓
Severe sarcopenia	\	\downarrow	\downarrow

Sarcopenia case-finding algorithm for clinical practice (EWGSOP*)

International working group on sarcopenia (IWGS'

Sarcopenia is the age-associated loss of skeletal muscle mass and function

- Another consensus definition was published 2011
- Diagnosis:
 - gait speed of less than 1 meter per second (< 1 m/s)
 - low muscle mass (e.g., appendicular mass relative to height², that is ≤ 7.23 kg/m² in men and ≤ 5.67 kg/m² in women)

Prevalence of sarcopenia (by EWGSOP* definition1)

Older people :	Age	Prevalence of Sarcopenia
Living in the community	> 65 years > 80 years	5% to 17% ^{2,3} 29% ⁴
In long-term care	> 70 years	33%5
In hospital	≥ 65 years	10% ⁶

- Prevalence is influenced by age, country, ethnicity, and concomitant disease
- Further studies of prevalence are needed for high-risk populations, e.g., very elderly in the community, people in nursing homes

*European Working Group on Sarcopenia in Older Persons

Sarcopenia and frailty overlap

Diagnostic criteria for:	
Frailty – Fried	Sarcopenia – EWGSOP*
 Weight loss Weakness Self-reported exhaustion Slow walking speed Low physical activity level 	 Decreased skeletal muscle mass Decreased muscle strength Reduced physical performance

Strength
Sarcopenia Functionality
Muscle mass

^{*}European Working Group on Sarcopenia in Older Persons

Tools for measuring sarcopenia parameters

Muscle mass	Muscle strength	Physical performance
 Bioimpedance analysis (BIA) Computed tomography (CT) Magnetic resonance imaging (MRI) Dual-energy X-ray absorptiometry (DXA) Body potassium per fat-free mass Anthropometry (calf or thigh circumference) 	 Hand grip strength Knee flexion/ extension Peak expiratory flow 	 Short Physical Performance Battery (SPPB) Usual gait speed Timed get-up-and-gotest Stair-climb power test

Bioimpedence Analysis (BIA)

SARC-F score

• More than >4 indicate sarcopenia

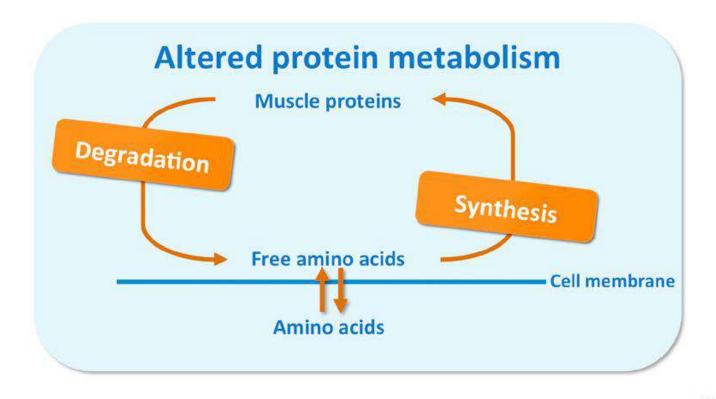
Component	Question	Scoring
Strength	How much difficulty do you have in lifting and carrying 10 lbs?	None=0 Some=1 a lot, unable =2
Assistance in walking	How much difficulty do you have walking across the room?	None=0 Some=1 a lot, use aids unable =2
Rise from chair	How much difficulty do you have transferring from a chair or a bed?	None=0 Some=1 a lot, unable without help =2
Climb stairs	How much difficulty do you have climbing a flight of 10 stairs?	None=0 Some=1 a lot, unable =2
Falls	How many times have you fallen in the past year?	None=0 1-3 fall=1 >4 fall=2

Learning objectives

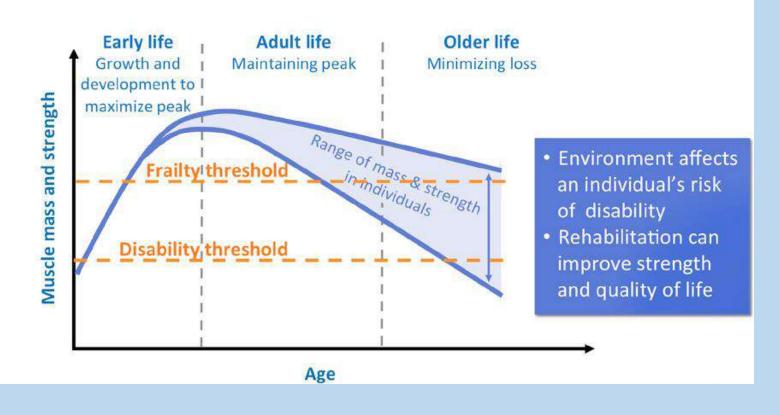
- 1. Explain complex effects of aging on muscle mass and function.
- 2. Review recent definitions of sarcopenia.
- 3. Describe the complex causes and consequences of sarcopenia.
- 4. Determine how nutrition intervention can impact the incidence and course of sarcopenia.

Primary versus secondary sarcopenia (EWGSOP*)

Primary Sarcopenia		
Age	No other cause evident except aging	
	Secondary Sarcopenia	
Nutrition-related sarcopenia	Inadequate dietary intake of energy and/or protein, malabsorption, gastrointestinal disorders, or use of medications that cause anorexia	
Activity-related Bed rest, sedentary lifestyle, deconditioning of sarcopenia gravity conditions		
Disease-related sarcopenia	Advanced organ failure (heart, lung, liver, kidney, brain), inflammatory disease, malignancy, or endocrine disease	

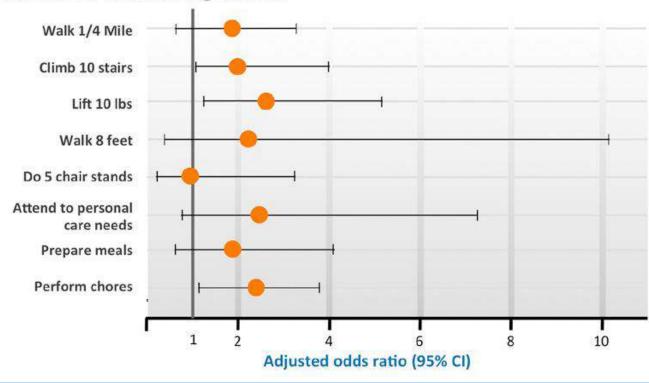

^{*}European Working Group on Sarcopenia in Older Persons definition

Comparing sarcopenia and cachexia


	Sarcopenia	Cachexia
Weight	=	$\downarrow \downarrow$
Lean tissue	V	$\downarrow \downarrow$
Fat tissue	= or ↑	\
Appetite	=	\
Cortisol	=:	1
Inflammatory disease	No	Yes
Pathway	Does not lead to cachexia	May lead to sarcopenia

The etiology of sarcopenia Disease: inflammatory or neurodegenerative Age-related hormone Sarcopenia Inadequate decline protein or energy intake (Growth hormone/ IGF-1, testosterone, DHEA, estrogens) **Pre-disposing** genetic factors Inactivity or disability 1.Thomas DR. Clin Nutr. 2007;26:389-399.

Skeletal muscle mass: factors affecting the balance of protein synthesis and degradation



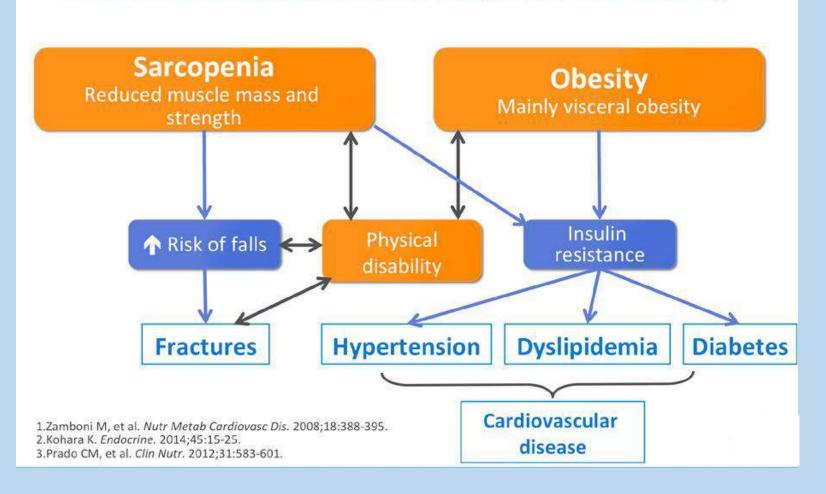
Lifecourse approach to sarcopenia

Sarcopenia increases likelihood of poor physical function and increased disability

Likelihood of not being able to:



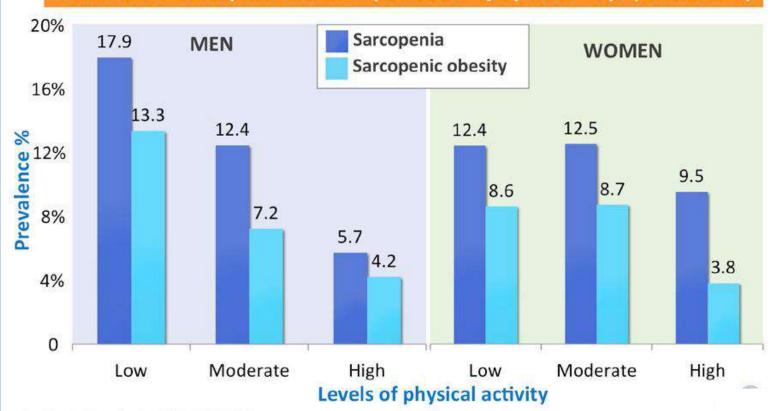
Age-related sarcopenia has high health care costs


	MALES			FEMALES		
	Normal	Moderate sarcopenia	Severe sarcopenia	Normal	Moderate sarcopenia	Severe sarcopenia
Prevalence	36%	53%	11%	69%	22%	9%
Relative risk of disability %	1.00	3.48	4.60	1.00	1.46	3.15
Cost, billion \$	-	\$7.2 B	\$3.6 B	ä	\$2.7 B	\$5.0 B

The estimated direct health care cost of sarcopenia in the United States in 2000 was \$18.5 billion; about 1.5% of total health care expenditures

Sarcopenia is associated with adverse outcomes

Health consequences of sarcopenia and obesity

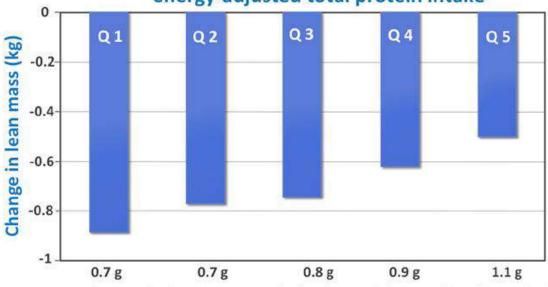

Prevalence of sarcopenic obesity varies by definition¹

		Definitions: sarcopenia and obesity	N	Mean age	Prevalence sarcopenic obesity
New Mexico Aging Process Study, 2000 ²	Sarcopeni Obesity:	a: skeletal muscle mass -2 SD below mean of young population (or < 7.26 kg/m² (M); < 5.45 kg/m² (W)) % body fat > median (or > 27% (M), 38% (W))	831	≥ 60	M: 4.4% W: 3.0%
NHANES III, 1999-2000 ³	Sarcopeni Obesity:	a: two lower quintiles of muscle mass (or < 9.12 kg/m² (M); < 6.53 kg/m² (W)) two highest quintiles of fat mass (or > 37.16% (M); > 40.01% (W))	M:1391 W:1591	M: 76.3 W: 77.3	M: 9.6% W: 7.4%
Zoico et al, 2004 ⁴	Sarcopeni Obesity:	a: two lower quintiles of muscle mass (< 5.7 kg/m²) two highest quintiles of fat mass (> 42.9%)	W: 167	71.7	12.4%

M = men; W = women

Sarcopenic obesity is reduced in active individuals

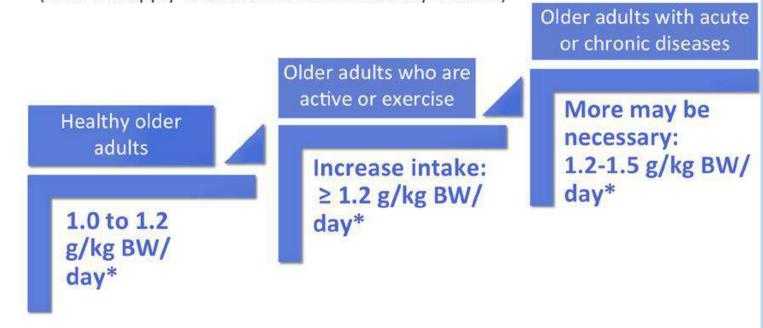
Prevalence of sarcopenia and sarcopenic obesity by levels of physical activity


Learning objectives

- 1. Explain complex effects of aging on muscle mass and function.
- 2. Review recent definitions of sarcopenia.
- 3. Describe the complex causes and consequences of sarcopenia.
- 4. Determine how nutrition intervention can impact the incidence and course of sarcopenia.

Health ABC Study: low protein intake and loss of lean body mass

- Muscle loss is greatest when protein intake is lowest
- Standard protein intake may not be sufficient in older people


Adjusted lean mass (LM) loss by quintile of energy-adjusted total protein intake

Protein intake in grams per kg body weight per day, by quintile

Older people need higher protein intake

Protein intake recommendations from the PROT-AGE study group (does not apply to those with severe kidney disease)

*Recommended daily intake of protein, expressed in grams of protein per kilogram of body weight per day (g/kg BW/day)

Does increased protein intake improve muscle and physical function?

Group receiving:	Daily protein	Placebo	
Skeletal muscle mass (per DXA)	No change	No change	
Muscle strength	Significant increase (57 \pm 5 to 68 \pm 5 kg; $p < 0.01$)	Significant increase (57 \pm 5 to 63 \pm 5 kg; p < 0.01)	
Short Physical Performance Battery	Significant improvement (from 8.9 ± 0.6 to 10.0 ± 0.6 points; $p = 0.02$)	No change (from 7.8 ± 0.6 to 7.9 ± 0.6 points)	

In frail older people, protein supplements may improve physical function, but do not necessarily increase muscle mass

Effects of exercise can be enhanced by combining with increased protein intake

Study		Key findings
Kim et al 2012 ¹	RCT of community- dwelling elderly women with sarcopenia	Exercise and amino acid supplements (high-leucine) together result in improvements in muscle strength the combined variables of muscle mass + walking speed and muscle mass + strength
Yang et al 2012 ²	Dose-response design to determine protein synthesis in healthy, older adults after exercise	Exercised muscles of older adults respond to higher protein doses (20 and 40 g protein) than younger adults, whose post-exercise rates of muscle protein synthesis are maximized with 20 g of protein

These two studies provide supporting evidence, but further research is needed to confirm the effect

Leucine and β-hydroxy-β-methylbutyrate (HMB) improve protein synthesis

Consuming supplemental amino acids rich in leucine is shown to improve muscle protein synthesis in older adults¹

- Older sarcopenic adults who exercised and took supplements rich in leucine had increased leg muscle mass and strength, and increased walking speed¹
- Leucine supplementation may not improve muscle strength longterm²

HMB supplementation may also improve muscle mass, strength, function, and quality in non-exercising older adults³

- Increased muscle strength or function,^{4,5} muscle quality⁵
- Preserved muscle mass even during 10 days of bed rest⁶

Both leucine and HMB supplementation may positively effect body composition and muscle strength measures in older adults^{1,7}

Attention to diet and exercise throughout life can offset sarcopenia

"Intervention to prevent sarcopenia may need to begin at a much younger age than is currently common.

Lifelong improvements in physical activity and diet are probably the most effective public health interventions for this condition."

Take-home messages: Sarcopenia

- Sarcopenia is common in aging and is associated with declines in muscle mass, strength, and/or function.
- Sarcopenia results from a complex interaction among many factors, including nutrition.
- Low muscle mass in sarcopenia increases risk of frailty and disability and leads to increased healthcare needs and costs.
- Nutrition intervention and exercise may have an impact on sarcopenia's course and prevalence.